bims-orenst Biomed News
on Organs-on-chips and engineered stem cell models
Issue of 2021–08–15
eight papers selected by
Joram Mooiweer, University of Groningen



  1. BMC Res Notes. 2021 Aug 13. 14(1): 310
       OBJECTIVE: The spheroid model provides a physiological platform to study cancer cell biology and drug sensitivity. Usage of bovine collagen I for spheroid assays is costly especially when experiments are conducted in 24-well plates, as high volume of bovine collagen I is needed. The aim of the study was to downsize spheroid assays to a microfluidic 3D cell culture chip and compare the growth, invasion and response to drug/compound of spheroids embedded in the 3D chip to spheroids embedded in 24-well plates.
    RESULTS: Spheroids generated from nasopharyngeal carcinoma cell line HK-1 continuously grew and invaded into collagen matrix in a 24-well plate. Similar observations were noticed with spheroids embedded in the 3D chip. Large spheroids in both 24-well plate and the 3D chip disintegrated and invaded into the collagen matrix. Preliminary drug sensitivity assays showed that the growth and invasion of spheroids were inhibited when spheroids were treated with combination of cisplatin and paynantheine at high concentrations, in a 24-well plate. Comparable findings were obtained when spheroids were treated with the same drug combination in the 3D chip. Moving forward, spheroid assays could be performed in the 3D chip in a more high-throughput manner with minimal time and cost.
    Keywords:  3D cell culture chip; Bovine collagen I; Cisplatin; Mitragyna alkaloid; Nasopharyngeal carcinoma; Paynantheine; Spheroids
    DOI:  https://doi.org/10.1186/s13104-021-05727-0
  2. Elife. 2021 Aug 11. pii: e67106. [Epub ahead of print]10
      Traditional drug safety assessment often fails to predict complications in humans, especially when the drug targets the immune system. Here, we show the unprecedented capability of two human Organs-on-Chips to evaluate the safety profile of T-cell bispecific antibodies (TCBs) targeting tumor antigens. Although promising for cancer immunotherapy, TCBs are associated with an on-target, off-tumor risk due to low levels of expression of tumor antigens in healthy tissues. We leveraged in vivo target expression and toxicity data of TCBs targeting folate receptor 1 (FOLR1) or carcinoembryonic antigen (CEA) to design and validate human immunocompetent Organs-on-Chips safety platforms. We discovered that the Lung-Chip and Intestine-Chip could reproduce and predict target-dependent TCB safety liabilities, based on sensitivity to key determinants thereof, such as target expression and antibody affinity. These novel tools broaden the research options available for mechanistic understandings of engineered therapeutic antibodies and assessing safety in tissues susceptible to adverse events.
    Keywords:  cancer biology; human; medicine
    DOI:  https://doi.org/10.7554/eLife.67106
  3. Nat Biomed Eng. 2021 Aug 12.
      The therapeutic efficacy of stem cells transplanted into an ischaemic brain depends primarily on the responses of the neurovascular unit. Here, we report the development and applicability of a functional neurovascular unit on a microfluidic chip as a microphysiological model of ischaemic stroke that recapitulates the function of the blood-brain barrier as well as interactions between therapeutic stem cells and host cells (human brain microvascular endothelial cells, pericytes, astrocytes, microglia and neurons). We used the model to track the infiltration of a number of candidate stem cells and to characterize the expression levels of genes associated with post-stroke pathologies. We observed that each type of stem cell showed unique neurorestorative effects, primarily by supporting endogenous recovery rather than through direct cell replacement, and that the recovery of synaptic activities is correlated with the recovery of the structural and functional integrity of the neurovascular unit rather than with the regeneration of neurons.
    DOI:  https://doi.org/10.1038/s41551-021-00744-7
  4. Adv Healthc Mater. 2021 Aug 08. e2100968
      Vascular atresia are often treated via transcatheter recanalization or surgical vascular anastomosis due to congenital malformations or coronary occlusions. The cellular response to vascular anastomosis or recanalization is, however, largely unknown and current techniques rely on restoration rather than optimization of flow into the atretic arteries. An improved understanding of cellular response post anastomosis may result in reduced restenosis. Here, an in vitro platform is used to model anastomosis in pulmonary arteries (PAs) and for procedural planning to reduce vascular restenosis. Bifurcated PAs are bioprinted within 3D hydrogel constructs to simulate a reestablished intervascular connection. The PA models are seeded with human endothelial cells and perfused at physiological flow rate to form endothelium. Particle image velocimetry and computational fluid dynamics modeling show close agreement in quantifying flow velocity and wall shear stress within the bioprinted arteries. These data are used to identify regions with greatest levels of shear stress alterations, prone to stenosis. Vascular geometry and flow hemodynamics significantly affect endothelial cell viability, proliferation, alignment, microcapillary formation, and metabolic bioprofiles. These integrated in vitro-in silico methods establish a unique platform to study complex cardiovascular diseases and can lead to direct clinical improvements in surgical planning for diseases of disturbed flow.
    Keywords:  3D bioprinting; anastomosis; bifurcated vessels; particle image velocimetry; pulmonary artery atresia
    DOI:  https://doi.org/10.1002/adhm.202100968
  5. Talanta. 2021 Nov 01. pii: S0039-9140(21)00623-8. [Epub ahead of print]234 122702
      In this work, an integrated 3-dimensional microfluidic device was developed for simulation of the immune microenvironment of glioma niche through the co-culture of three kinds of related cells. Glioma cells, endothelial cells and macrophages were co-cultured together in the microfluidic device, spatially separated by the design of a coffer structure and the use of hydrogel. This platform enabled separate monitoring of the morphology change and migration of cells, as well as molecular interactions between different kinds of cells. Tumor cells were found to exhibit EMT like shape change to become thinner, and sensitive perception and taxis toward macrophages. The influence of tumor cells and the microenvironment, macrophages would be re-educated and the phenotype could be changed from M1 (tumor-suppressive) to M2 (tumor-supportive), which could be validated through cytokines analysis. This 3D microfluidic tumor model provides a powerful tool for studying the biological properties of glioma niche.
    Keywords:  3D microfluidic device; Cell analysis; Cell co-culture; Glioma niche; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.talanta.2021.122702
  6. Cells Tissues Organs. 2021 Aug 06. 1-12
      Due to the rapidly growing number of older people worldwide and the concomitant increase in cardiovascular complications, there is an urgent need for age-related cardiac disease modeling and drug screening platforms. In the present study, we developed a cardiac tissue chip model that incorporates hemodynamic loading and mimics essential aspects of the infarcted aging heart. We induced cellular senescence in H9c2 myoblasts using low-dose doxorubicin treatment. These senescent cells were then used to engineer cardiac tissue fibers, which were subjected to hemodynamic stresses associated with pressure-volume changes in the heart. Myocardial ischemia was modeled in the engineered cardiac tissue via hypoxic treatment. Our results clearly show that acute low-dose doxorubicin treatment-induced senescence, as evidenced by morphological and molecular markers, including enlarged and flattened nuclei, DNA damage response foci, and increased expression of cell cycle inhibitor p16INK4a, p53, and ROS. Under normal hemodynamic load, the engineered cardiac tissues demonstrated cell alignment and retained cardiac cell characteristics. Our senescent cardiac tissue model of hypoxia-induced myocardial infarction recapitulated the pathological disease hallmarks such as increased cell death and upregulated expression of ANP and BNP. In conclusion, the described methodology provides a novel approach to generate stress-induced aging cardiac cell phenotypes and engineer cardiac tissue chip models to study the cardiovascular disease pathologies associated with aging.
    Keywords:  Aging; Biomimetic cardiac tissue chip models; Cellular senescence; DNA damage; Hypoxia
    DOI:  https://doi.org/10.1159/000516954
  7. Acta Biomater. 2021 Aug 10. pii: S1742-7061(21)00526-2. [Epub ahead of print]
      Hanging drop (HD) is one of the most popular methods used for forming three-dimensional (3D) cell spheroids. However, conventional hanging drop systems are only applicable for short-term spheroid culture due to their inconvenience in exchanging cell culture media. Here we present a medium-reservoir-integrated superhydrophobic (MRI-SH) chip for long-term HD spheroid cultures. The device consists of two main components: i) a patterned superhydrophobic (SH) surface containing an array of wettable spots which anchor arrays of droplets of cell suspension, and ii) an array of chambers that serve as medium reservoirs, both interconnected via an array of thru-holes. This configuration provides two distinct advantages over conventional HD configurations: i) the high wettability contrast of the SH pattern on the chip leads to the formation and adhesion of nearly spherical hanging droplets on its surface, which minimizes interactions between the liquid and the substrate; ii) the integrated chambers provide large volumes of medium to maintain longer culture durations. Using this device, spheroids of MHCC97H cells were successfully formed, and the cultured spheroids could maintain high viability for up to 30 days and exhibited enhanced spheroid morphology compared to those cultured in the conventional HD systems.
    Keywords:  Hanging drop; medium reservoir; spheroid; superhydrophobic surface
    DOI:  https://doi.org/10.1016/j.actbio.2021.08.006
  8. Biomed Mater. 2021 Aug 12.
      Perfusion-decellularization was an interesting technique to generate a natural extracellular matrix (ECM) with the complete three-dimensional anatomical structure and vascular system. In this study, the esophageal extracellular matrix (E-ECM) scaffold was successfully constructed by perfusion-decellularized technique through the vascular system for the first time. And the physicochemical and biological properties of the E-ECM scaffolds were evaluated. The bone marrow mesenchymal stem cells (BMSCs) were induced to differentiate into myocytes in vitro. E-ECM scaffolds reseeded with myocytes were implanted into the greater omenta to obtain recellular esophageal extracellular matrix (RE-ECM), a tissue-engineered esophagus. The results showed that the cells of the esophagi were completely and uniformly removed after perfusion. E-ECM scaffolds retained the original four-layer organizational structure and vascular system with excellent biocompatibility. And the E-ECM scaffolds had no significant difference in mechanical properties comparing with fresh esophagi, p > 0.05. Immunocytochemistry showed positive expression of α-sarcomeric actin, suggesting that BMSCs had successfully differentiated into myocytes. Most importantly, we found that in the RE-ECM muscularis, the myocytes regenerated linearly and continuously and migrated to the deep, and the tissue vascularization was obvious. The cell survival rates at one week and two weeks were 98.5±3.0% and 96.4±4.6%, respectively. It was demonstrated that myocytes maintained the ability for proliferation and differentiation for at least two weeks, and the cell activity was satisfactory in the RE-ECM. It follows that the tissue-engineered esophagus based on perfusion-decellularized technique and mesenchymal stem cells has great potential in esophageal repair. It is proposed as a promising alternative for reconstruction of esophageal defects in the future.
    Keywords:  esophageal extracellular matrix; myocyte; perfusion-decellularization; regeneration
    DOI:  https://doi.org/10.1088/1748-605X/ac1d3d