Sheng Wu Gong Cheng Xue Bao. 2021 Jul 25. 37(7): 2543-2553
We designed and fabricated a novel high throughput brain-on-chip with three dimensional structure with the aim to simulate the in vivo three-dimensional growth environment for brain tissues. The chip consists of a porous filter and 3D brain cell particles, and is loaded into a conventional 96-well plate for use. The filter and the particle molds were fabricated by using computer modeling, 3D printing of positive mold and agarose-PDMS double reversal mold. The 3D cell particles were made by pouring and solidifying a suspension of mouse embryonic brain cells with sodium alginate into a cell particle mold, and then cutting the resulting hydrogel into pieces. The loaded brain-on-chip was used to determine the neurotoxicity of pesticides. The cell particles were exposed to 0, 10, 30, 50, 100 and 200 µmol/L of chlorpyrifos or imidacloprid, separated conveniently from the medium by removing the porous filter after cultivation. Subsequently, cell proliferation, acetylcholinesterase activity and lactate dehydrogenase release were determined for toxicity evaluation. The embryonic brain cells were able to grow and proliferate normally in the hydrogel particles loaded into the filter in a 96-well plate. Pesticide neurotoxicity test showed that both chlorpyrifos and imidacloprid presented dose-dependent inhibition on cell growth and proliferation. Moreover, the pesticides showed inhibition on acetylcholinesterase activity and increase release of lactate dehydrogenase. However, the effect of imidacloprid was significantly weaker than that of chlorpyrifos. In conclusion, a novel brain-on-chip was developed in this study, which can be used to efficiently assess the drug neurotoxicity, pharmacodynamics, and disease mechanism by combining with a microtiterplate reader.
Keywords: 3D cell culture; brain-on-chip; high-throughput detection; neurotoxicity; pesticides