bims-orenst Biomed News
on Organs-on-chips and engineered stem cell models
Issue of 2021–05–30
twelve papers selected by
Joram Mooiweer, University of Groningen



  1. Adv Sci (Weinh). 2021 May;8(10): 2004990
      With the outbreak of new respiratory viruses and high mortality rates of pulmonary diseases, physiologically relevant models of human respiratory system are urgently needed to study disease pathogenesis, drug efficacy, and pharmaceutics. In this paper, a 3D alveolar barrier model fabricated by printing four human alveolar cell lines, namely, type I and II alveolar cells (NCI-H1703 and NCI-H441), lung fibroblasts (MRC5), and lung microvascular endothelial cells (HULEC-5a) is presented. Automated high-resolution deposition of alveolar cells by drop-on-demand inkjet printing enables to fabricate a three-layered alveolar barrier model with an unprecedented thickness of ≈10 µm. The results show that the 3D structured model better recapitulate the structure, morphologies, and functions of the lung tissue, compared not only to a conventional 2D cell culture model, as expected, but also a 3D non-structured model of a homogeneous mixture of the alveolar cells and collagen. Finally, it is demonstrated that this thin multilayered model reproduce practical tissue-level responses to influenza infection. Drop-on-demand inkjet-printing is an enabling technology for customization, scalable manufacturing, and standardization of their size and growth, and it is believed that this 3D alveolar barrier model can be used as an alternative to traditional test models for pathological and pharmaceutical applications.
    Keywords:  3D cultures; air‐blood barrier; bioprinting; influenza A virus; lungs
    DOI:  https://doi.org/10.1002/advs.202004990
  2. Biomed Mater. 2021 May 24.
      A microfluidic technique is presented for micropatterning protein domains and cell cultures within permanently bonded organs-on-chip devices. This method is based on the use of polydimethylsiloxane layers coupled with the plasma ablation technique for selective protein removal. We show how this technique can be employed to generate a multi-organ in vitro model directly within a microscale platform suitable for pharmacokinetic-based drug screening. We miniaturized a liver model based on micropatterned co-cultures in dual-compartment microfluidic devices. The cytotoxic effect of liver-metabolized Tegafur on colon cancer cell line was assessed using two microfluidic devices where microgrooves and valves systems are used to model drug diffusion between culture compartments. The platforms can reproduce the metabolism of Tegafur in the liver, thus killing colon cancer cells. The proposed plasma-enhanced microfluidic protein patterning method thus successfully combines the ability to generate precise cell micropatterning with the intrinsic advantages of microfluidics in cell biology.
    Keywords:  biofabrication; cytotoxicity; metabolism; microfluidics; micropatterning; multi-organ-on-chip
    DOI:  https://doi.org/10.1088/1748-605X/ac0454
  3. Biotechnol Bioeng. 2021 May 26.
      Bioprinting three-dimensional (3D) tissue equivalents have progressed tremendously over the last decade. 3D bioprinting is currently being employed to develop larger and more physiologic tissues, and of particular interest is to generate vasculature in biofabricated tissues to aid better perfusion and transport of nutrition. Having the advantage over manual culture systems by bringing together biological scaffold materials and cells in precise 3D spatial orientation, bioprinting could assist in placing endothelial cells in specific spatial locations within a 3D matrix to promote vessel formation at these predefined areas. Hence, in the present study we investigated the use of bioprinting to generate tissue-level capillary-like networks in biofabricated tissue constructs. First, we developed a bioink using collagen type-1 supplemented with xanthan gum (XG) as a thickening agent. Using a commercial extrusion-based multi-head bioprinter and Collagen-XG bioink, the component cells were spatially assembled wherein, the endothelial cells were bioprinted in a lattice pattern and sandwiched between bioprinted fibroblasts layers. 3D bioprinted constructs thus generated were stable, and maintained structural shape and form. Post-print culture of the bioprinted tissues resulted in endothelial sprouting and formation of interconnected capillary-like networks within the lattice pattern and between the fibroblast layers. Bioprinter-assisted spatial placement of endothelial cells resulted in fabrication of patterned prevascularized constructs that enables potential regenerative applications in the future. This article is protected by copyright. All rights reserved.
    Keywords:  additive manufacturing; bioink; bioprinting; stem cells; tissue engineering; vascularized tissue
    DOI:  https://doi.org/10.1002/bit.27838
  4. Adv Sci (Weinh). 2021 May;8(10): 2004705
      Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin-like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue-derived, epithelial-only intestinal organoids. HELP enables the encapsulation of dissociated patient-derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal-derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin-ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid-matrix interactions and potential patient-specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G' ≈ 1 kPa), slower stress relaxation rate (t 1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10-3-1 × 10-3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal-derived products or synthetic polyethylene glycol for potential clinical translation.
    Keywords:  3D cell culture; adult stem cells; engineered biomaterial; extracellular matrix; intestinal organoid
    DOI:  https://doi.org/10.1002/advs.202004705
  5. APL Bioeng. 2021 Jun;5(2): 026104
      Interactions between the different liver cell types are critical to the maintenance or induction of their function in vitro. In this work, human-induced Pluripotent Stem Cells (hiPSCs)-derived Liver Sinusoidal Endothelial Cells (LSECs) and Hepatocytes-Like Cells (HLCs) were cultured and matured in a microfluidic environment. Both cell populations were differentiated in Petri dishes, detached, and inoculated in microfluidic biochips. In cocultures of both cell types, the tissue has exhibited a higher production of albumin (3.19 vs 5.31 μg/mL/106 cells in monocultures and cocultures) as well as a higher inducibility CYP450 over monocultures of HLCs. Tubular-like structures composed of LSECs and positive for the endothelial marker PECAM1, as well as a tissue more largely expressing Stabilin-2 were detected in cocultures only. In contrast, monocultures exhibited no network and less specific endothelial markers. The transcriptomic analysis did not reveal a marked difference between the profiles of both culture conditions. Nevertheless, the analysis allowed us to highlight different upstream regulators in cocultures (SP1, EBF1, and GATA3) and monocultures (PML, MECP2, and NRF1). In cocultures, the multi-omics dataset after 14 days of maturation in biochips has shown the activation of signaling related to hepatic maturation, angiogenesis, and tissue repair. In this condition, inflammatory signaling was also found to be reduced when compared to monocultures as illustrated by the activation of NFKB and by the detection of several cytokines involved in tissue injury in the latter. Finally, the extracted biological processes were discussed regarding the future development of a new generation of human in vitro hepatic models.
    DOI:  https://doi.org/10.1063/5.0041227
  6. Biomicrofluidics. 2021 May;15(3): 034105
      Cancer cell migration through tissue pores and tracks into the bloodstream is a critical biological step for cancer metastasis. Although in vivo studies have shown that expression of vimentin can induce invasive cell lines, its role in cell cytoskeleton reorganization and cell motility under in vitro physical confinement remains unknown. Here, a microfluidic device with cell culture chamber and collagen-coated microchannels was developed as an in vitro model for physiological confinement environments. Using this microchannel assay, we demonstrated that the knockdown of vimentin decreases 3T3 fibroblast cell directional migration speed in confined microchannels. Additionally, as cells form dynamic membranes that define the leading edge of motile cells, different leading edge morphologies of 3T3 fibroblast and 3T3 vimentin knockdown cells were observed. The leading edge morphology change under confinement can be explained by the effect of vimentin on cytoskeletal organization and focal adhesion. The microfluidic device integrated with a time-lapse microscope provided a new approach to study the effect of vimentin on cell adhesion, migration, and invasiveness.
    DOI:  https://doi.org/10.1063/5.0045197
  7. ACS Appl Mater Interfaces. 2021 May 25.
      The extracellular microenvironment is an important regulator of cell functions. Numerous structural cues present in the cellular microenvironment, such as ligand distribution and substrate topography, have been shown to influence cell behavior. However, the roles of these cues are often studied individually using simplified, single-cue platforms that lack the complexity of the three-dimensional, multi-cue environment cells encounter in vivo. Developing ways to bridge this gap, while still allowing mechanistic investigation into the cellular response, represents a critical step to advance the field. Here, we present a new approach to address this need by combining optics-based protein patterning and lithography-based substrate microfabrication, which enables high-throughput investigation of complex cellular environments. Using a contactless and maskless UV-projection system, we created patterns of extracellular proteins (resembling contact-guidance cues) on a two-and-a-half-dimensional (2.5D) cell culture chip containing a library of well-defined microstructures (resembling topographical cues). As a first step, we optimized experimental parameters of the patterning protocol for the patterning of protein matrixes on planar and non-planar (2.5D cell culture chip) substrates and tested the technique with adherent cells (human bone marrow stromal cells). Next, we fine-tuned protein incubation conditions for two different vascular-derived human cell types (myofibroblasts and umbilical vein endothelial cells) and quantified the orientation response of these cells on the 2.5D, physiologically relevant multi-cue environments. On concave, patterned structures (curvatures between κ = 1/2500 and κ = 1/125 μm-1), both cell types predominantly oriented in the direction of the contact-guidance pattern. In contrast, for human myofibroblasts on micropatterned convex substrates with higher curvatures (κ ≥ 1/1000 μm-1), the majority of cells aligned along the longitudinal direction of the 2.5D features, indicating that these cells followed the structural cues from the substrate curvature instead. These findings exemplify the potential of this approach for systematic investigation of cellular responses to multiple microenvironmental cues.
    Keywords:  2.5D substrate; cellular orientation; contact guidance; curvature; extracellular matrix; micropatterning; topography
    DOI:  https://doi.org/10.1021/acsami.1c01984
  8. Nat Commun. 2021 May 27. 12(1): 3192
      Tissues achieve their complex spatial organization through an interplay between gene regulatory networks, cell-cell communication, and physical interactions mediated by mechanical forces. Current strategies to generate in-vitro tissues have largely failed to implement such active, dynamically coordinated mechanical manipulations, relying instead on extracellular matrices which respond to, rather than impose mechanical forces. Here, we develop devices that enable the actuation of organoids. We show that active mechanical forces increase growth and lead to enhanced patterning in an organoid model of the neural tube derived from single human pluripotent stem cells (hPSC). Using a combination of single-cell transcriptomics and immunohistochemistry, we demonstrate that organoid mechanoregulation due to actuation operates in a temporally restricted competence window, and that organoid response to stretch is mediated extracellularly by matrix stiffness and intracellularly by cytoskeleton contractility and planar cell polarity. Exerting active mechanical forces on organoids using the approaches developed here is widely applicable and should enable the generation of more reproducible, programmable organoid shape, identity and patterns, opening avenues for the use of these tools in regenerative medicine and disease modelling applications.
    DOI:  https://doi.org/10.1038/s41467-021-22952-0
  9. Methods Mol Biol. 2021 ;2299 263-274
      Idiopathic pulmonary fibrosis (IPF) is a chronic pathological disorder that targets alveoli interstitial tissues and is characterized by the progressive stiffening of alveolar membrane. The median survival rate of the patients with IPF is less than 5 years. Currently, IPF has no cure and there are few options to alleviate the progress of this disease. A critical roadblock in developing new anti-fibrosis therapies is the absence of reliable cell based in vitro models that can recapitulate the progressive features of this disease. Here a novel fibrotic microtissue on a chip system is created to model the fibrotic transition of the lung interstitial tissue and the effect of anti-fibrosis drugs on such transitions. This system will not only help to expedite the efficacy analysis of anti-fibrotic therapies but also help to unveil their potential mode of action.
    Keywords:  Anti-fibrosis therapy; Drug screening; Lung on a chip; Microtissue array; Nintedanib; Pirfenidone; Pulmonary fibrosis; Stiffness, and contractile force; Tissue mechanics
    DOI:  https://doi.org/10.1007/978-1-0716-1382-5_19
  10. Front Pharmacol. 2021 ;12 667010
      Three-dimensional (3D) microphysiological systems (MPSs) mimicking human organ function in vitro are an emerging alternative to conventional monolayer cell culture and animal models for drug development. Human induced pluripotent stem cells (hiPSCs) have the potential to capture the diversity of human genetics and provide an unlimited supply of cells. Combining hiPSCs with microfluidics technology in MPSs offers new perspectives for drug development. Here, the integration of a newly developed liver MPS with a cardiac MPS-both created with the same hiPSC line-to study drug-drug interaction (DDI) is reported. As a prominent example of clinically relevant DDI, the interaction of the arrhythmogenic gastroprokinetic cisapride with the fungicide ketoconazole was investigated. As seen in patients, metabolic conversion of cisapride to non-arrhythmogenic norcisapride in the liver MPS by the cytochrome P450 enzyme CYP3A4 was inhibited by ketoconazole, leading to arrhythmia in the cardiac MPS. These results establish integration of hiPSC-based liver and cardiac MPSs to facilitate screening for DDI, and thus drug efficacy and toxicity, isogenic in the same genetic background.
    Keywords:  cisapride; drug–drug interaction; hiPSC-derived cells; ketoconazole; liver and heart integration; microphysiological systems
    DOI:  https://doi.org/10.3389/fphar.2021.667010
  11. Bioeng Transl Med. 2021 May;6(2): e10195
      Engineering complex tissues requires the use of advanced biofabrication techniques that allow the replication of the tissue's 3D microenvironment, architecture and cellular interactions. In the case of skin, the most successful strategies to introduce the complexity of hair follicle (HF) appendages have highlighted the importance of facilitating direct interaction between dermal papilla (DP) cells and keratinocytes (KCs) in organotypic skin models. In this work, we took advantage of microscopy-guided laser ablation (MGLA) to microfabricate a fibroblast-populated collagen hydrogel and create a subcompartment that guides the migration of KCs and lead their interaction with DP cells to recreate follicular structures. Upon definition of the processing parameters (laser incidence area and power), MGLA was used to create 3D microchannels from the surface of a standard organotypic human skin model up to the aggregates containing DP cells and KCs, previously incorporated into the dermal-like fibroblast-collagen layer. Analysis of the constructs showed that the fabricated microfeatures successfully guided the fusion between epidermal and aggregates keratinocytes, which differentiated into follicular-like structures within the organotypic human skin model, increasing its functionality. In summary, we demonstrate the fabrication of a highly structured 3D hydrogel-based construct using MGLA to attain a complex skin model bearing folliculoid structures, highlighting its potential use as an in vitro platform to study the mechanisms controlling HF development or for the screening of bioactive substances.
    Keywords:  3D tissue model; biofabrication; dermal papilla; hair follicle; laser ablation; skin model
    DOI:  https://doi.org/10.1002/btm2.10195
  12. Sci Adv. 2021 May;pii: eabg2237. [Epub ahead of print]7(22):
      Most of the vascular platforms currently being studied are lab-on-a-chip types that mimic capillary networks and are applied for vascular response analysis in vitro. However, these platforms have a limitation in clearly assessing the physiological phenomena of native blood vessels compared to in vivo evaluation. Here, we developed a simply fabricable tissue-engineered vascular microphysiological platform (TEVMP) with a three-dimensional (3D) vascular structure similar to an artery that can be applied for ex vivo and in vivo evaluation. Furthermore, we applied the TEVMP as ex vivo and in vivo screening systems to evaluate the effect of human CD200 (hCD200) overexpression in porcine endothelial cells (PECs) on vascular xenogeneic immune responses. These screening systems, in contrast to 2D in vitro and cellular xenotransplantation in vivo models, clearly demonstrated that hCD200 overexpression effectively suppressed vascular xenograft rejection. The TEVMP has a high potential as a platform to assess various vascular-related responses.
    DOI:  https://doi.org/10.1126/sciadv.abg2237