bims-orenst Biomed News
on Organs-on-chips and engineered stem cell models
Issue of 2020–12–27
five papers selected by
Joram Mooiweer, University of Groningen



  1. Lab Chip. 2020 Dec 21.
      The outer blood-retinal barrier (oBRB) tightly controls the transport processes between the neural tissue of the retina and the underlying blood vessel network. The barrier is formed by the retinal pigment epithelium (RPE), its basal membrane and the underlying choroidal capillary bed. Realistic three-dimensional cell culture based models of the oBRB are needed to study mechanisms and potential treatments of visual disorders such as age-related macular degeneration that result from dysfunction of the barrier tissue. Ideally, such models should also include clinically relevant read-outs to enable translation of experimental findings in the context of pathophysiology. Here, we report a microfluidic organ-on-a-chip model of the oBRB that contains a monolayer of human immortalized RPE and a microvessel of human endothelial cells, separated by a semi-permeable membrane. Confluent monolayers of both cell types were confirmed by fluorescence microscopy. The three-dimensional vascular structures within the chip were imaged by optical coherence tomography: a medical imaging technique, which is routinely applied in ophthalmology. Differences in diameters and vessel density could be readily detected. Upon inducing oxidative stress by treating with hydrogen peroxide (H2O2), a dose dependent increase in barrier permeability was observed by using a dynamic assay for fluorescence tracing, analogous to the clinically used fluorescence angiography. This organ-on-a-chip of the oBRB will allow future studies of complex disease mechanisms and treatments for visual disorders using clinically relevant endpoints in vitro.
    DOI:  https://doi.org/10.1039/d0lc00639d
  2. Lab Chip. 2020 Dec 22.
      An accurate in vitro model of human adipose tissue could assist in the study of adipocyte function and allow for better tools for screening new therapeutic compounds. Cell culture models on two-dimensional surfaces fall short of mimicking the three-dimensional in vivo adipose environment, while three-dimensional culture models are often unable to support long-term cell culture due, in part, to insufficient mass transport. Microfluidic systems have been explored for adipose tissue models. However, current systems have primarily focused on 2D cultured adipocytes. In this work, a 3D human adipose microtissue was engineered within a microfluidic system. Human adipose-derived stem cells (ADSCs) were used as the cell source for generating differentiated adipocytes. The ADSCs differentiated within the microfluidic system formed a dense lipid-loaded mass with the expression of adipose tissue genetic markers. Engineered adipose tissue showed a decreased adiponectin secretion and increased free fatty acid secretion with increasing shear stress. Adipogenesis markers were downregulated with increasing shear stress. Overall, this microfluidic system enables the on-chip differentiation and development of a functional 3D human adipose microtissue supported by the interstitial flow. This system could potentially serve as a platform for in vitro drug testing for adipose tissue-related diseases.
    DOI:  https://doi.org/10.1039/d0lc00981d
  3. J Vis Exp. 2020 Dec 03.
      The recently introduced microphysiological systems (MPS) cultivating human organoids are expected to perform better than animals in the preclinical tests phase of drug developing process because they are genetically human and recapitulate the interplay among tissues. In this study, the human intestinal barrier (emulated by a co-culture of Caco-2 and HT-29 cells) and the liver equivalent (emulated by spheroids made of differentiated HepaRG cells and human hepatic stellate cells) were integrated into a two-organ chip (2-OC) microfluidic device to assess some acetaminophen (APAP) pharmacokinetic (PK) and toxicological properties. The MPS had three assemblies: Intestine only 2-OC, Liver only 2-OC, and Intestine/Liver 2-OC with the same media perfusing both organoids. For PK assessments, we dosed the APAP in the media at preset timepoints after administering it either over the intestinal barrier (emulating the oral route) or in the media (emulating the intravenous route), at 12 µM and 2 µM respectively. The media samples were analyzed by reversed-phase high-pressure liquid chromatography (HPLC). Organoids were analyzed for gene expression, for TEER values, for protein expression and activity, and then collected, fixed, and submitted to a set of morphological evaluations. The MTT technique performed well in assessing the organoid viability, but the high content analyses (HCA) were able to detect very early toxic events in response to APAP treatment. We verified that the media flow does not significantly affect the APAP absorption whereas it significantly improves the liver equivalent functionality. The APAP human intestinal absorption and hepatic metabolism could be emulated in the MPS. The association between MPS data and in silico modeling has great potential to improve the predictability of the in vitro methods and provide better accuracy than animal models in pharmacokinetic and toxicological studies.
    DOI:  https://doi.org/10.3791/60184
  4. Lab Chip. 2020 Dec 22.
      Endothelial cells (ECs) in vivo are subjected to three forms of shear stress induced by luminal blood flow, transendothelial flow and interstitial flow simultaneously. It is controversial that shear stress, especially the component induced by luminal flow, was thought to inhibit the initialization of angiogenesis and trigger arteriogenesis. Here, we combined microfabrication techniques and delicate numerical simulations to reconstruct the initial physiological microenvironment of neovascularization in vitro, where ECs experience high luminal shear stress, physiological transendothelial flow and various vascular endothelial growth factor (VEGF) distributions simultaneously. With the biomimetic microfluidic model, cell alignment and endothelial sprouting assays were carried out. We found that luminal shear stress inhibits endothelial sprouting and tubule formation in a dose-dependent manner. Although a high concentration of VEGF increases EC sprouting, neither a positive nor a negative VEGF gradient additionally affects the degree of sprouting, and luminal shear stress significantly attenuates neovascularization even in the presence of VEGF. Heparinase was used to selectively degrade the heparan sulfate proteoglycan (HSPG) coating on ECs and messenger RNA profiles in ECs were analyzed. It turned out that HSPGs could act as a mechanosensor to sense the change of fluid shear stress, modulate multiple EC gene expressions, and hence affect neovascularization. In summary, distraction from the stabilized state, such as decreased luminal shear stress, increased VEGF and the destructed mechanotransduction of HSPGs would induce the initiation of neovascularization. Our study highlights the key role of the magnitude and forms of shear stress in neovascularization.
    DOI:  https://doi.org/10.1039/d0lc00493f
  5. Front Bioeng Biotechnol. 2020 ;8 579896
      3D tumor models clearly outperform 2D cell cultures in recapitulating tissue architecture and drug response. However, their potential in understanding treatment efficacy and resistance development should be better exploited if also long-term effects of treatment could be assessed in vitro. The main disadvantages of the matrices commonly used for in vitro culture are their limited cultivation time and the low comparability with patient-specific matrix properties. Extended cultivation periods are feasible when primary human cells produce the extracellular matrix in situ. Herein, we adapted the hyalograft-3D approach from reconstructed human skin to normal and tumor oral mucosa models and compared the results to bovine collagen-based models. The hyalograft models showed similar morphology and cell proliferation after 7 weeks compared to collagen-based models after 2 weeks of cultivation. Tumor thickness and VEGF expression increased in hyalograft-based tumor models, whereas expression of laminin-332, tenascin C, and hypoxia-inducible factor 1α was lower than in collagen-based models. Taken together, the in situ produced extracellular matrix better confined tumor invasion in the first part of the cultivation period, with continuous tumor proliferation and increasing invasion later on. This proof-of-concept study showed the successful transfer of the hyalograft approach to tumor oral mucosa models and lays the foundation for the assessment of long-term drug treatment effects. Moreover, the use of an animal-derived extracellular matrix is avoided.
    Keywords:  Hyalograft 3D; extracellular matrix; head and neck cancer; long-term cultivation; oral mucosa; personalized medicine; tissue engineering; tumor microenvironment
    DOI:  https://doi.org/10.3389/fbioe.2020.579896