bims-obesme Biomed News
on Obesity metabolism
Issue of 2025–04–27
thirteen papers selected by
Xiong Weng, University of Edinburgh



  1. Adv Sci (Weinh). 2025 Apr 25. e2417355
      METTL14 dimerizes with METTL3 to install N6-methyladenosine (m6A) on mRNA (m6A writers). Subsequently, m6A readers bind to m6A-marked RNA to influence its metabolism. RNA m6A emerges to critically regulate multiple intracellular processes; however, there is a gap in our understanding of m6A in liver metabolism. Glucose-6-phosphatase catalytic subunit (G6pc) mediates hepatic glucose production (HGP) and serves as the gatekeeper for glycogenolysis and gluconeogenesis; however, G6pc regulation is not fully understood. Here, METTL14 is identified as a posttranscriptional regulator of G6pc. Liver METTL14, METTL3, and m6A-methylated G6pc mRNA are upregulated in mice with diet-induced obesity. Deletion of Mettl14 decreases, whereas overexpression of METTL14 increases, G6pc mRNA m6A in hepatocytes in vitro and in vivo. Five m6A sites are identified, and disruption of them (G6pcΔ 5A) blocks METTL14-induced m6A methylation of G6pcΔ 5A mRNA. METTL14 increases both stability and translation of G6pc but not G6pcΔ 5A mRNA. YTHDF1 and YTHDF3 but not YTHDF2 (m6A readers) bind to m6A-marked G6pc mRNA to increase its synthesis. Deletion of hepatic Mettl14 decreases gluconeogenesis in primary hepatocytes, liver slices, and mice. Hepatocyte-specific restoration of G6pc reverses defective HGP in Mettl14 knockout mice. These results unveil a METTL14/G6pc mRNA m6A/G6pc biosynthesis/HGP axis governing glucose metabolism in health and metabolic disease.
    Keywords:  G6pc; YTHDF1; YTHDF3; gluconeogenesis; hepatic glucose production; m6A, METTL14; obesity; type 2 diabetes
    DOI:  https://doi.org/10.1002/advs.202417355
  2. Proc Natl Acad Sci U S A. 2025 Apr 29. 122(17): e2426338122
      Ketogenesis requires fatty acid flux from intracellular (lipid droplets) and extrahepatic (adipose tissue) lipid stores to hepatocyte mitochondria. However, whether interorganelle contact sites regulate this process is unknown. Recent studies have revealed a role for Calsyntenin-3β (CLSTN3β), an endoplasmic reticulum-lipid droplet contact site protein, in the control of lipid utilization in adipose tissue. Here, we show that Clstn3b expression is induced in the liver by the nuclear receptor PPARα in settings of high lipid utilization, including fasting and ketogenic diet feeding. Hepatocyte-specific loss of CLSTN3β in mice impairs ketogenesis independent of changes in PPARα activation. Conversely, hepatic overexpression of CLSTN3β promotes ketogenesis in mice. Mechanistically, CLSTN3β affects LD-mitochondria crosstalk, as evidenced by changes in fatty acid oxidation, lipid-dependent mitochondrial respiration, and the mitochondrial integrated stress response. These findings define a function for CLSTN3β-dependent membrane contacts in hepatic lipid utilization and ketogenesis.
    Keywords:  hepatocyte; ketogenesis; ketogenic diet; lipid metabolism
    DOI:  https://doi.org/10.1073/pnas.2426338122
  3. Science. 2025 Apr 25. 388(6745): eadj0430
      Starting at middle age, adults often suffer from visceral adiposity and associated adverse metabolic disorders. Lineage tracing in mice revealed that adipose progenitor cells (APCs) in visceral fat undergo extensive adipogenesis during middle age. Thus, despite the low turnover rate of adipocytes in young adults, adipogenesis is unlocked during middle age. Transplantations quantitatively showed that APCs in middle-aged mice exhibited high adipogenic capacity cell-autonomously. Single-cell RNA sequencing identified a distinct APC population, the committed preadipocyte, age-enriched (CP-A), emerging at this age. CP-As demonstrated elevated proliferation and adipogenesis activity. Pharmacological and genetic manipulations indicated that leukemia inhibitory factor receptor signaling was indispensable for CP-A adipogenesis and visceral fat expansion. These findings uncover a fundamental mechanism of age-dependent adipose remodeling, offering critical insights into age-related metabolic diseases.
    DOI:  https://doi.org/10.1126/science.adj0430
  4. Nat Metab. 2025 Apr;7(4): 823-841
      Cachexia, a severe wasting syndrome characterized by tumour-induced metabolic dysregulation, is a leading cause of death in people with cancer, yet its underlying mechanisms remain poorly understood. Here we show that a longitudinal full-body single-nuclei-resolution transcriptome analysis in a Drosophila model of cancer cachexia captures interorgan dysregulations. Our study reveals that the tumour-secreted interleukin-like cytokine Upd3 induces fat-body expression of Pepck1 and Pdk, key regulators of gluconeogenesis, disrupting glucose metabolism and contributing to cachexia. Similarly, in mouse cancer cachexia models, we observe IL-6-JAK-STAT-signalling-mediated induction of Pck1 and Pdk3 expression in the liver. Increased expression of these genes in fly, mouse, and human correlates with poor prognosis, and hepatic expression of Pdk3 emerges as a previously unknown mechanism contributing to metabolic dysfunction in cancer cachexia. This study highlights the conserved nature of tumour-induced metabolic disruptions and identifies potential therapeutic targets to mitigate cachexia in people with cancer.
    DOI:  https://doi.org/10.1038/s42255-025-01265-2
  5. Nat Chem Biol. 2025 Apr 22.
      Mitochondrial homeostasis is maintained through complex regulatory mechanisms, including the balance of mitochondrial dynamics involving fusion and fission processes. A central player in this regulation is the ubiquitin-proteasome system (UPS), which controls the degradation of pivotal mitochondrial proteins. In this study, we identified cullin-RING E3 ligase 2 (CRL2) and its substrate receptor, FEM1B, as critical regulators of mitochondrial dynamics. Through proteomic analysis, we demonstrate here that FEM1B controls the turnover of PLD6, a key regulator of mitochondrial dynamics. Using structural and biochemical approaches, we show that FEM1B physically interacts with PLD6 and that this interaction is facilitated by the direct association of FEM1B with the mitochondrial import receptor TOM20. Ablation of FEM1B or disruption of the FEM1B-TOM20 interaction impairs PLD6 degradation and induces mitochondrial defects, phenocopying PLD6 overexpression. These findings underscore the importance of FEM1B in maintaining mitochondrial morphology and provide further mechanistic insights into how the UPS regulates mitochondrial homeostasis.
    DOI:  https://doi.org/10.1038/s41589-025-01894-4
  6. Aging Cell. 2025 Apr 24. e70071
      Extracellular vesicles (EVs) are secreted by most cell types, transmitting crucial signaling molecules like proteins, small RNAs, and DNA. We previously demonstrated that EVs from murine and human mesenchymal stem cells (MSCs) functioned as senomorphics to suppress markers of senescence and the inflammatory senescence-associated secretory phenotype (SASP) in cell culture and in aged mice. Here we demonstrate that EVs from additional types of human adult stem cells and embryonic progenitor cells have a senomorphic activity. Based on their miRNA profiles showing prevalence in stem cell EVs versus nonstem cell EVs and the number of age-related genes targeted, we identified eight miRNAs as potential senomorphic miRNAs. Analysis of these miRNAs by transfection into etoposide-induced senescent IMR90 human fibroblasts revealed that each of the miRNAs alone regulated specific senescence and SASP markers, but none had complete senomorphic activity. Evaluation of ~300 combinations of miRNAs for senotherapeutic activity identified a senomorphic cocktail of miR-181a-5p, miR-92a-3p, miR-21-5p, and miR-186-5p that markedly reduced the expression of p16INK4a, p21Cip1, IL-1β, and IL-6 and the percentage of SA-ß-gal-positive cells. Transcriptome analysis identified multiple pathways affected by the miRNA cocktail, including cellular senescence and inhibition of PCAF and HIPK2 in the p53 signaling pathway. Finally, treatment of aged mice with liposomes containing the four miRNA cocktail suppressed markers of senescence and inflammation in multiple tissues. These studies suggest that EVs derived from stem cells suppress senescence and inflammation, at least in part, through miRNAs and that a senomorphic miRNA cocktail could be used to target senescence and inflammation to extend health span.
    Keywords:  aging; antiaging; cellular senescence; molecular biology of aging; senescence
    DOI:  https://doi.org/10.1111/acel.70071
  7. Mol Metab. 2025 Apr 21. pii: S2212-8778(25)00062-6. [Epub ahead of print] 102155
      SF1 neurons of the ventromedial hypothalamus (VMH) play a pivotal role in regulating body weight and adiposity, particularly in response to a high-fat diet (HFD), as well as in the recovery from insulin-induced hypoglycemia. While the brain-specific CPT1C isoform is well known for its role in controlling food intake and energy homeostasis, its function within specific hypothalamic neuronal populations remains largely unexplored. Here, we demonstrate that CPT1C in SF1 neurons is essential for appropriate responses to dietary fats. Mice deficient in CPT1C within SF1 neurons fail to adjust their caloric intake during initial HFD exposure, which is associated with impaired activation of the melanocortin system. Furthermore, these mice exhibit disrupted metabolic gene expression in the liver, muscle, and adipose tissue, leading to increased adiposity independently of food intake. In contrast, their response to glucose or insulin challenges remains intact. After long-term HFD exposure, SF1-Cpt1c-KO mice are more prone to developing obesity and glucose intolerance than control littermates, with males exhibiting a more severe phenotype. Interestingly, CPT1C deficiency in SF1 neurons also results in elevated hypothalamic endocannabinoid (eCB) levels under both chow and HFD conditions. We propose that this sustained eCB elevation reduces VMH activation by fatty acids and impairs the SF1-POMC drive upon fat intake. Our findings establish CPT1C in SF1 neurons as a critical regulator of VMH-driven dietary fat sensing, satiety, and lipid metabolic adaptation.
    Keywords:  CPT1C; SF1 neurons; adiposity; endocannabinoids; food intake; high-fat diet
    DOI:  https://doi.org/10.1016/j.molmet.2025.102155
  8. J Clin Invest. 2025 Apr 24. pii: e191021. [Epub ahead of print]
      The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH) involves alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the contributions of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. In humans with MASH, liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. Loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of ketogenesis could serve a protective role through additional mechanisms that extend beyond overall rates of fat oxidation.
    Keywords:  Fatty acid oxidation; Hepatology; Intermediary metabolism; Metabolism; Obesity
    DOI:  https://doi.org/10.1172/JCI191021
  9. Proc Natl Acad Sci U S A. 2025 Apr 29. 122(17): e2424741122
      There is currently a global epidemic of obesity and obesity-related diseases such as type 2 diabetes due to decreased physical activity, excessive food intake, and/or genetic predisposition. The Hippo-YAP1 pathway has attracted attention as a potential therapeutic target because YAP1/TAZ activation in murine immature adipocytes in vitro suppresses their differentiation by inhibiting PPARγ activity. However, the role of YAP1 activation in mature adipocytes in vivo remains unclear. MOB1, whose expression is increased in obesity, is the hub of the Hippo core molecule complex and negatively regulates YAP1/TAZ activation. Therefore, we generated aMob1DKO mutant mice, which feature deficiency of Mob1a/b specifically in mature adipocytes. Compared to controls, aMob1DKO mice subjected to a high-fat diet showed beneficial changes consistent with resistance to diet-induced obesity. The mutants exhibited increases in basal lipolysis, "beiging," and energy expenditure, as well as suppression of ROS production and inflammation in white adipose tissue. Insulin sensitivity and glucose tolerance were improved, and ectopic fat accumulation was reduced. Most of these changes were dependent on the YAP1 activation observed in mature white adipose tissue of aMob1DKO mice. FGF21, which improves lipid metabolism, was upregulated directly via YAP1 activation, and many of the phenotypes seen in aMob1DKO mice were also dependent on FGF21. Thus, the aMob1DKO mouse is an interesting model for the study of the metabolic effects of diet-induced obesity and protection against diabetes. Our work suggests that a YAP1-FGF21 axis exists in adipocytes that may be a potential therapeutic target for obesity.
    Keywords:  MOB1-YAP1-FGF21-OPA1 axis; adipocytes; diabetes; obesity
    DOI:  https://doi.org/10.1073/pnas.2424741122
  10. Nat Commun. 2025 Apr 22. 16(1): 3749
      Despite extensive studies at the genomic, transcriptomic and metabolomic levels, the underlying mechanisms regulating longevity are incompletely understood. Post-translational protein acetylation is suggested to regulate aspects of longevity. To further explore the role of acetylation, we develop the PHARAOH computational tool based on the 100-fold differences in longevity within the mammalian class. Analyzing acetylome and proteome data across 107 mammalian species identifies 482 and 695 significant longevity-associated acetylated lysine residues in mice and humans, respectively. These sites include acetylated lysines in short-lived mammals that are replaced by permanent acetylation or deacetylation mimickers, glutamine or arginine, respectively, in long-lived mammals. Conversely, glutamine or arginine residues in short-lived mammals are replaced by reversibly acetylated lysine in long-lived mammals. Pathway analyses highlight the involvement of mitochondrial translation, cell cycle, fatty acid oxidation, transsulfuration, DNA repair and others in longevity. A validation assay shows that substituting lysine 386 with arginine in mouse cystathionine beta synthase, to attain the human sequence, increases the pro-longevity activity of this enzyme. Likewise, replacing the human ubiquitin-specific peptidase 10 acetylated lysine 714 with arginine as in short-lived mammals, reduces its anti-neoplastic function. Overall, in this work we propose a link between the conservation of protein acetylation and mammalian longevity.
    DOI:  https://doi.org/10.1038/s41467-025-58762-x
  11. Cell Metab. 2025 Apr 12. pii: S1550-4131(25)00209-8. [Epub ahead of print]
      Excessive intake of dietary fructose increases the risk of metabolic-dysfunction-associated steatotic liver disease (MASLD), cirrhosis, and cancers. However, what host factors determine disease vulnerability is incompletely understood. Here, we leverage genetically divergent mouse strains, mass spectrometry-based metabolomics, and in vivo isotope tracing, identifying circulating glycerate as a biomarker that predicts resilience to fructose-induced hepatic steatosis in both sexes. We found that the surge of circulating glycerate after an oral fructose provision reflects strong small-intestinal fructose catabolism. Such fructose clearance by the small intestine is linked to a weaker induction of hepatic de novo lipogenesis and steatosis upon chronic fructose exposure across strains. These data indicate the potential utility of an oral fructose tolerance test and circulating glycerate measurements to predict an individual's susceptibility to fructose-elicited steatotic liver and provide personalized dietary recommendations.
    Keywords:  MASLD; fructose; in vivo isotope tracing; liquid chromatography spectrometry
    DOI:  https://doi.org/10.1016/j.cmet.2025.03.017
  12. Nature. 2025 Apr 23.
      Environmental thermal challenges trigger the brain to coordinate both autonomic and behavioural responses to maintain optimal body temperature1-4. It is unknown how temperature information is precisely stored and retrieved in the brain and how it is converted into a physiological response. Here we investigated whether memories could control whole-body metabolism by training mice to remember a thermal challenge. Mice were conditioned to associate a context with a specific temperature by combining thermoregulatory Pavlovian conditioning with engram-labelling technology, optogenetics and chemogenetics. We report that if mice are returned to an environment in which they previously experienced a 4 °C cold challenge, they increase their metabolic rates regardless of the actual environmental temperature. Furthermore, we show that mice have increased hypothalamic activity when they are exposed to the cold, and that a specific network emerges between the hippocampus and the hypothalamus during the recall of a cold memory. Both natural retrieval and artificial reactivation of cold-sensitive memory engrams in the hippocampus mimic the physiological responses that are seen during a cold challenge. These ensembles are necessary for cold-memory retrieval. These findings show that retrieval of a cold memory causes whole-body autonomic and behavioural responses that enable mice to maintain thermal homeostasis.
    DOI:  https://doi.org/10.1038/s41586-025-08902-6