bims-nurfca Biomed News
on NRF2 and Cancer
Issue of 2024–04–14
ten papers selected by
Caner Geyik, Istinye University



  1. Cell Rep. 2024 Apr 10. pii: S2211-1247(24)00432-7. [Epub ahead of print]43(4): 114104
      Clinical evidence has revealed that high-level activation of NRF2 caused by somatic mutations in NRF2 (NFE2L2) is frequently detected in esophageal squamous cell carcinoma (ESCC), whereas that caused by somatic mutations in KEAP1, a negative regulator of NRF2, is not. Here, we aspire to generate a mouse model of NRF2-activated ESCC using the cancer-derived NRF2L30F mutation and cancer driver mutant TRP53R172H. Concomitant expression of NRF2L30F and TRP53R172H results in formation of NRF2-activated ESCC-like lesions. In contrast, while squamous-cell-specific deletion of KEAP1 induces similar NRF2 hyperactivation, the loss of KEAP1 combined with expression of TRP53R172H does not elicit the formation of ESCC-like lesions. Instead, KEAP1-deleted cells disappear from the esophageal epithelium over time. These findings demonstrate that, while cellular NRF2 levels are similarly induced, NRF2 gain of function and KEAP1 loss of function elicits distinct fates of squamous cells. The NRF2L30F mutant mouse model developed here will be instrumental in elucidating the mechanistic basis leading to NRF2-activated ESCC.
    Keywords:  CP: Cancer
    DOI:  https://doi.org/10.1016/j.celrep.2024.114104
  2. Arch Esp Urol. 2024 Mar;77(2): 119-128
       BACKGROUND: Renal cell carcinoma (RCC) is one of the most common malignancies of the urinary system and ferroptosis is considered as a promising therapeutic approach for treating RCC. Ginsenoside Rh4 (Rh4) was proved to have anticancer properties and play roles in ferroptosis. This study aimed to investigate the potential of ginsenoside Rh4 (Rh4) in enhancing the sensitivity of renal cell carcinoma (RCC) cells to ferroptosis and to elucidate the underlying mechanisms.
    METHODS: RCC cell lines of 786-O and ACHN were treated with RAS-selective lethal 3 (RSL3) and/or Rh4. Cell-viability assays were used to determine how Rh4 affected the sensitivity of RCC cells to RSL3-induced ferroptosis. Quantitative real-time polymerase chain reaction was conducted to examine the levels of ferroptosis-related genes. Additionally, the knockdown of nuclear factor E2-related factor 2 (NRF2) was performed to investigate the role of NRF2 in mediating the effects of Rh4.
    RESULTS: RSL3 suppressed the progression of RCC cells by inducing ferroptosis. Furthermore, Rh4 led to more RCC sensitivity to ferroptosis induced by RSL3. Rh4 downregulated the ferroptosis-related gene expression including superoxide dismutase 1 (p < 0.01), glutathione peroxidase 4 (p < 0.01), and catalase (p < 0.01), which was attenuated by NRF2 knockdown. This finding suggested that Rh4 exerted its sensitising effect on ferroptosis through the NRF2 pathway.
    CONCLUSIONS: Rh4 made RCC cells more sensitive to ferroptosis by inhibiting the NRF2 signaling and suppressing the expression of antioxidant enzymes. Therefore, combining Rh4 with ferroptosis-inducing reagents to treat RCC had potential therapeutic application.
    Keywords:  GPX4; NRF2 pathway; ferroptosis; ginsenoside Rh4; renal cell carcinoma (RCC)
    DOI:  https://doi.org/10.56434/j.arch.esp.urol.20247702.16
  3. Environ Toxicol. 2024 Apr 08.
       BACKGROUNDS: Non-small cell lung carcinoma (NSCLC) is a common type of lung cancer. Prior investigations have elucidated the pivotal role of miR-29b-3p in restraining tumor growth and metastasis. Nonetheless, it remains to be determined whether miR-29b-3p can effectively suppress NSCLC progression and enhance the sensitivity of NSCLC cells to cisplatin. This investigation sought to determine the mechanism by which miR-29b-3p inhibited the advancement of NSCLC and mitigated resistance to cisplatin.
    METHODS: We initially assessed miR-29b-3p and VEGF levels in NSCLC tissues and cell lines. Next, miR-29b-3p expression was elevated in NSCLC cell lines H1975 and A549 by overexpression plasmid transfection. Following this, a sequence of molecular biology experiments was conducted to evaluate the impact of miR-29b-3p on the biological behaviors of NSCLC cells and their resistance to cisplatin. Additionally, we predicted VEGF was a target gene of miR-29b-3p by bioinformatics analysis. We next employed western blot to evaluate the protein expression of Nrf2 and HO-1 in NSCLC cells. Finally, we elucidated the effects of VEGF and Nrf2/HO-1pathway on NSCLC progression and cisplatin resistance by in vitro assays.
    RESULTS: In comparison to paracancerous tissues and human normal lung epithelial cells, the expression of miR-29b-3p was notably reduced and VEGF expression was clearly elevated in NSCLC tissues and cells. Moreover, miR-29b-3p upregulated obviously suppressed the biological activities of NSCLC cells and increased their sensitivity to cisplatin. Furthermore, in NSCLC cells, miR-29b-3p bound to VEGF and negatively regulate its transcription. Additionally, miR-29b-3p overexpression also inhibited the Nrf2/HO-1 signaling pathway. Finally, the overexpression of VEGF and the activation of the Nrf2/HO-1 pathway reversed miR-29b-3p-mediated inhibitory effect on biological behaviors of NSCLC cells and increased the cisplatin resistance.
    CONCLUSION: Our findings indicate that miR-29b-3p impedes NSCLC cells' biological behaviors and augments their sensitivity to cisplatin by targeting VEGF to modulate the Nfr2/HO-1 signaling pathway.
    Keywords:  VEGF; cisplatin resistance; miR‐29b‐3p; non‐small cell lung cancer
    DOI:  https://doi.org/10.1002/tox.24253
  4. Oncoimmunology. 2024 ;13(1): 2340154
      Metabolism reprogramming within the tumor microenvironment (TME) can have a profound impact on immune cells. Identifying the association between metabolic phenotypes and immune cells in lung adenocarcinoma (LUAD) may reveal mechanisms of resistance to immune checkpoint inhibitors (ICIs). Metabolic phenotypes were classified by expression of metabolic genes. Somatic mutations and transcriptomic features were compared across the different metabolic phenotypes. The metabolic phenotype of LUAD is predominantly determined by reductase-oxidative activity and is divided into two categories: redoxhigh LUAD and redoxlow LUAD. Genetically, redoxhigh LUAD is mainly driven by mutations in KEAP1, STK11, NRF2, or SMARCA4. These mutations are more prevalent in redoxhigh LUAD (72.5%) compared to redoxlow LUAD (17.4%), whereas EGFR mutations are more common in redoxlow LUAD (19.0% vs. 0.7%). Single-cell RNA profiling of pre-treatment and post-treatment samples from patients receiving neoadjuvant chemoimmunotherapy revealed that tissue-resident memory CD8+ T cells are responders to ICIs. However, these cells are significantly reduced in redoxhigh LUAD. The redoxhigh phenotype is primarily attributed to tumor cells and is positively associated with mTORC1 signaling. LUAD with the redoxhigh phenotype demonstrates a lower response rate (39.1% vs. 70.8%, p = 0.001), shorter progression-free survival (3.3 vs. 14.6 months, p = 0.004), and overall survival (12.1 vs. 31.2 months, p = 0.022) when treated with ICIs. The redoxhigh phenotype in LUAD is predominantly driven by mutations in KEAP1, STK11, NRF2, and SMARCA4. This phenotype diminishes the number of tissue-resident memory CD8+ T cells and attenuates the efficacy of ICIs.
    Keywords:  Immune checkpoint inhibitors; KEAP1/STK11/SMARCA4/NRF2 mutations; lung adenocarcinoma; metabolic phenotypes; tissue-resident memory CD8+ T cells
    DOI:  https://doi.org/10.1080/2162402X.2024.2340154
  5. Cell Oncol (Dordr). 2024 Apr 09.
       PURPOSE: α2-adrenoceptor agonist dexmedetomidine (DEX) has been reported to promote tumorigenesis. Stem-cell protein Piwil2 is associated with cancer progression. Whether Piwil2 plays a role in tumor-promoting effects of DEX is unknown.
    METHODS: We examined the expression of Piwil2 in human colorectal cancer (CRC) cell lines with/without DEX treatment. We also studied the roles of Piwil2 in proliferation, invasion, migration, as well as expressions of epithelial-mesenchymal transition (EMT)-related proteins in DEX-treated in vitro and in vivo CRC models. And the experiments with genetic and pharmacological treatments were conducted to investigate the underlying molecular mechanism.
    RESULTS: RNA-sequencing (RNA-seq) analysis found Piwil2 is one of most upregulated genes upon DEX treatment in CRC cells. Furthermore, Piwil2 protein levels significantly increased in DEX-treated CRC cancer cells, which promoted proliferation, invasion, and migration in both CRC cell lines and human tumor xenografts model. Mechanistically, DEX increased nuclear factor E2-related factor 2 (Nrf2) expression, which enhanced Piwil2 transcription via binding to its promoter. Furthermore, in vitro experiments with Piwil2 knockdown or Siah2 inhibition indicated that DEX promoted EMT process and tumorigenesis through Siah2/PHD3/HIF1α pathway. The experiments with another α2-adrenoceptor agonist Brimonidine and antagonists yohimbine and atipamezole also suggested the role of Piwil2 signaling in tumor-promoting effects via an α2 adrenoceptor-dependent manner.
    CONCLUSION: DEX promotes CRC progression may via activating α2 adrenoceptor-dependent Nrf2/Piwil2/Siah2 pathway and thus EMT process. Our work provides a novel insight into the mechanism underlying tumor-promoting effects of α2-adrenoceptor agonists.
    Keywords:  Colorectal cancer cells; Dexmedetomidine; Epithelial–mesenchymal transition; Piwil2; Tumorigenesis
    DOI:  https://doi.org/10.1007/s13402-024-00944-8
  6. Oncogene. 2024 Apr 10.
      Triple-negative breast cancer (TNBC) is a very aggressive and heterogeneous group of tumors. In order to develop effective therapeutic strategies, it is therefore essential to identify the subtype-specific molecular mechanisms underlying disease progression and resistance to chemotherapy. TNBC cells are highly dependent on exogenous cystine, provided by overexpression of the cystine/glutamate antiporter SLC7A11/xCT, to fuel glutathione synthesis and promote an oxidative stress response consistent with their high metabolic demands. Here we show that TNBC cells of the mesenchymal stem-like subtype (MSL) utilize forced cystine uptake to induce activation of the transcription factor NRF2 and promote a glutathione-independent mechanism to defend against oxidative stress. Mechanistically, we demonstrate that NRF2 activation is mediated by direct cysteinylation of the inhibitor KEAP1. Furthermore, we show that cystine-mediated NRF2 activation induces the expression of important genes involved in oxidative stress response, but also in epithelial-to-mesenchymal transition and stem-like phenotype. Remarkably, in survival analysis, four upregulated genes (OSGIN1, RGS17, SRXN1, AKR1B10) are negative prognostic markers for TNBC. Finally, expression of exogenous OSGIN1, similarly to expression of exogenous NRF2, can prevent cystine depletion-dependent death of MSL TNBC cells. The results suggest that the cystine/NRF2/OSGIN1 axis is a potential target for effective treatment of MSL TNBCs.
    DOI:  https://doi.org/10.1038/s41388-024-03025-0
  7. Biomol Ther (Seoul). 2024 Apr 09.
      Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.
    Keywords:  Cancer stem cell; Chemoresistance; Cholangiocarcinoma; Cordycepin; Gemcitabine
    DOI:  https://doi.org/10.4062/biomolther.2023.198
  8. Reprod Biol Endocrinol. 2024 Apr 11. 22(1): 41
       BACKGROUND: Premature ovarian failure (POF) caused by cisplatin is a severe and intractable sequela for young women with cancer who received chemotherapy. Cisplatin causes the dysfunction of granulosa cells and mainly leads to but is not limited to its apoptosis and autophagy. Ferroptosis has been also reported to participate, while little is known about it. Our previous experiment has demonstrated that endometrial stem cells (EnSCs) can repair cisplatin-injured granulosa cells. However, it is still unclear whether EnSCs can play a repair role by acting on ferroptosis.
    METHODS: Western blotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were applied to detect the expression levels of ferroptosis-related genes. CCK-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were used to evaluate cell viability. Transmission electron microscopy (TEM) was performed to detect ferroptosis in morphology. And the extent of ferroptosis was assessed by ROS, GPx, GSSG and MDA indicators. In vivo, ovarian morphology was presented by HE staining and the protein expression in ovarian tissue was detected by immunohistochemistry.
    RESULTS: Our results showed that ferroptosis could occur in cisplatin-injured granulosa cells. Ferroptosis inhibitor ferrostatin-1 (Fer-1) and EnSCs partly restored cell viability and mitigated the damage of cisplatin to granulosa cells by inhibiting ferroptosis. Moreover, the repair potential of EnSCs can be markedly blocked by ML385.
    CONCLUSION: Our study demonstrated that cisplatin could induce ferroptosis in granulosa cells, while EnSCs could inhibit ferroptosis and thus exert repair effects on the cisplatin-induced injury model both in vivo and in vitro. Meanwhile, Nrf2 was validated to participate in this regulatory process and played an essential role.
    Keywords:  Endometrial stem cells; Ferroptosis; Ferrostatin-1; Nrf2; Premature ovarian failure
    DOI:  https://doi.org/10.1186/s12958-024-01208-8
  9. Adv Sci (Weinh). 2024 Apr 06. e2308349
      Customizable and number-tunable enzyme delivery nanocarriers will be useful in tumor therapy. Herein, a phage vehicle, T4-Lox-DNA-Fe (TLDF), which adeptly modulates enzyme numbers using phage display technology to remodel the tumor microenvironment (TME) is presented. Regarding the demand for lactic acid in tumors, each phage is engineered to display 720 lactate oxidase (Lox), contributing to the depletion of lactic acid to restructure the tumor's energy metabolism. The phage vehicle incorporated dextran iron (Fe) with Fenton reaction capabilities. H2O2 is generated through the Lox catalytic reaction, amplifying the H2O2 supply for dextran iron-based chemodynamic therapy (CDT). Drawing inspiration from the erythropoietin (EPO) biosynthetic process, an EPO enhancer is constructed to impart the EPO-Keap1 plasmid (DNA) with tumor hypoxia-activated functionality, disrupting the redox homeostasis of the TME. Lox consumes local oxygen, and positive feedback between the Lox and the plasmid promotes the expression of kelch ECH Associated Protein 1 (Keap1). Consequently, the downregulation of the antioxidant transcription factor Nrf2, in synergy with CDT, amplifies the oxidative killing effect, leading to tumor suppression of up to 78%. This study seamlessly integrates adaptable T4 phage vehicles with bio-intelligent plasmids, presenting a promising approach for tumor therapy.
    Keywords:  Nrf2 signal pathway; antioxidant braking; chemodynamic therapy; fenton reaction; phage display technology
    DOI:  https://doi.org/10.1002/advs.202308349
  10. Pathol Oncol Res. 2024 ;30 1611590
      Lung cancer is a paradigm for a genetically driven tumor. A variety of drugs were developed targeting specific biomarkers requiring testing for tumor genetic alterations in relevant biomarkers. Different next-generation sequencing technologies are available for library generation: 1) anchored multiplex-, 2) amplicon based- and 3) hybrid capture-based-PCR. Anchored multiplex PCR-based sequencing was investigated for routine molecular testing within the national Network Genomic Medicine Lung Cancer (nNGM). Four centers applied the anchored multiplex ArcherDX-Variantplex nNGMv2 panel to re-analyze samples pre-tested during routine diagnostics. Data analyses were performed by each center and compiled centrally according to study design. Pre-defined standards were utilized, and panel sensitivity was determined by dilution experiments. nNGMv2 panel sequencing was successful in 98.9% of the samples (N = 90). With default filter settings, all but two potential MET exon 14 skipping variants were identified at similar allele frequencies. Both MET variants were found with an adapted calling filter. Three additional variants (KEAP1, STK11, TP53) were called that were not identified in pre-testing analyses. Only total DNA amount but not a qPCR-based DNA quality score correlated with average coverage. Analysis was successful with a DNA input as low as 6.25 ng. Anchored multiplex PCR-based sequencing (nNGMv2) and a sophisticated user-friendly Archer-Analysis pipeline is a robust and specific technology to detect tumor genetic mutations for precision medicine of lung cancer patients.
    Keywords:  actionable mutations; anchored multiplex PCR; lung cancer; next-generation sequencing panel; targeted therapy
    DOI:  https://doi.org/10.3389/pore.2024.1611590