bims-nurfca Biomed News
on NRF2 and Cancer
Issue of 2023‒04‒30
five papers selected by
Caner Geyik
Istinye University


  1. Acta Biochim Biophys Sin (Shanghai). 2023 Apr 25.
      Ginsenoside Rh3 (GRh3) is a seminatural product obtained by chemical processing after isolation from Chinese herbal medicine that has strong antitumor activity against human tumors. However, its antitumor role remains to be elucidated. The aim of this study is to explore the mechanisms underlying the tumor suppressive activity of GRh3 from the perspective of pyroptosis and ferroptosis. GRh3 eliminates colorectal cancer (CRC) cells by activating gasdermin D (GSDMD)-dependent pyroptosis and suppressing solute carrier family 7 member 11 (SLC7A11), resulting in ferroptosis activation through the Stat3/p53/NRF2 axis. GRh3 suppresses nuclear factor erythroid 2-related factor 2 (NRF2) entry into the nucleus, leading to the decrease of heme oxygenase 1 (HO-1) expression, which in turn promotes NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and caspase-1 expression. Finally, caspase-1 activates GSDMD-dependent pyroptosis. Furthermore, GRh3 prevents NRF2 from entering the nucleus, which suppresses SLC7A11, causing the depletion of glutathione (GSH) and accumulation of iron, lipid reactive oxygen species (ROS) and malondialdehyde (MDA), and eventually leading to ferroptosis in CRC cells. In addition, GRh3 effectively inhibits the proliferation of CRC cells in vitro and in nude mouse models. Collectively, GRh3 triggers pyroptotic cell death and ferroptotic cell death in CRC cells via the Stat3/p53/NRF2 axis with minimal harm to normal cells, showing great anticancer potential.
    Keywords:  Stat3/p53/NRF2 axis; colorectal cancer; ferroptosis; ginsenoside Rh3; pyroptosis
    DOI:  https://doi.org/10.3724/abbs.2023068
  2. Biomed Res Int. 2023 ;2023 2620738
      Breast cancer is a highly harmful malignant tumor, which poses a great threat to women's body and mind, and the mortality rate ranks second among all women's diseases. The incidence rate accounts for 7-10% of various malignant tumors in the whole body, second only to uterine cancer in women, and has become the main cause of threatening women's health. Advanced breast cancer is often considered an incurable disease. The family of heterogeneous nuclear ribonucleoprotein complexes is composed of about 20 hnRNP proteins with molecular weights ranging from 32 to 120 kDa, and they are named according to their molecular weights. Among them, hnRNPA2 and hnRNPB1 are the two most important members of the hnRNP family, both derived from the same gene on chromosome 7p15. Therefore, research to understand the molecular mechanism and process of breast cancer progression has an important role in promoting the current medical research on breast cancer treatment methods. Therefore, studying the mechanism of tumorigenesis is the key to tumor prevention and treatment. Therefore, this paper proposes that A2/B1 promotes the stability of NRF2 mRNA and inhibits ferroptosis and cell proliferation in breast cancer cells. The article mainly introduces the disease diagnosis method based on artificial neural network and its neural network algorithm. In the experimental part, the activity of hnRNP A2/B1 on cancer cells is deeply studied. The results show that the absorbance of the MTT method increases continuously with the extension of the culture time, and the maximum reaches 1.2. This fully shows that its absorption capacity is very strong, especially after 24 hours, the absorption rate rises from 0.6 to 0.9, which shows that 24 hours is the best absorption time. And it can also be found that hnRNPA2/B1 has a significant inhibitory effect on breast cancer cells; it can reduce the effect on breast cancer cell cycle and apoptosis.
    DOI:  https://doi.org/10.1155/2023/2620738
  3. Int J Mol Sci. 2023 Apr 20. pii: 7608. [Epub ahead of print]24(8):
      Globally, bladder cancer (BLCA) is still the leading cause of death in patients with tumors. The function and underlying mechanism of MTX-211, an EFGR and PI3K kinase inhibitor, have not been elucidated. This study examined the function of MTX-211 in BLCA cells using in vitro and in vivo assays. RNA sequencing, quantitative real-time polymerase chain reaction, Western blotting, co-immunoprecipitation, and immunofluorescence were performed to elucidate the underlying mechanism. Our observations revealed that MTX-211 has a time- and concentration-dependent inhibitory effect on bladder cancer cell proliferation. Flow cytometry analysis showed that cell apoptosis and G0/G1 cell cycle arrest were significantly induced by MTX-211. MTX-211 inhibited intracellular glutathione (GSH) metabolism, leading to a decrease in GSH levels and an increase in reactive oxygen species. GSH supplementation partly reversed the inhibitory effects of MTX-211. Further experiments verified that MTX-211 promoted NFR2 protein ubiquitinated degradation via facilitating the binding of Keap1 and NRF2, subsequently resulting in the downregulated expression of GCLM, which plays a vital role in GSH synthesis. This study provided evidence that MTX-211 effectively inhibited BLCA cell proliferation via depleting GSH levels through Keap1/NRF2/GCLM signaling pathway. Thus, MTX-211 could be a promising therapeutic agent for cancer.
    Keywords:  GSH metabolism; Keap1/NRF2/GCLM; MTX-211; bladder cancer; proliferation
    DOI:  https://doi.org/10.3390/ijms24087608
  4. Redox Biol. 2023 Apr 17. pii: S2213-2317(23)00106-4. [Epub ahead of print]62 102705
      The eukaryotic ribosome is essential for cancer cell survival. Perturbation of ribosome biogenesis induces nucleolar stress or ribosomal stress, which restrains cancer growth, as rapidly proliferating cancer cells need more active ribosome biogenesis. In this study, we found that UTP11 plays an important role in the biosynthesis of 18S ribosomal RNAs (rRNA) by binding to the pre-rRNA processing factor, MPP10. UTP11 is overexpressed in human cancers and associated with poor prognoses. Interestingly, depletion of UTP11 inhibits cancer cell growth in vitro and in vivo through p53-depedednt and -independent mechanisms, whereas UTP11 overexpression promotes cancer cell growth and progression. On the one hand, the ablation of UTP11 impedes 18S rRNA biosynthesis to trigger nucleolar stress, thereby preventing MDM2-mediated p53 ubiquitination and degradation through ribosomal proteins, RPL5 and RPL11. On the other hand, UTP11 deficiency represses the expression of SLC7A11 by promoting the decay of NRF2 mRNA, resulting in reduced levels of glutathione (GSH) and enhanced ferroptosis. Altogether, our study uncovers a critical role for UTP11 in maintaining cancer cell survival and growth, as depleting UTP11 leads to p53-dependent cancer cell growth arrest and p53-independent ferroptosis.
    Keywords:  Ferroptosis; Nucleolar stress; Ribosome biogenesis; SLC7A11; UTP11; p53
    DOI:  https://doi.org/10.1016/j.redox.2023.102705
  5. J Med Chem. 2023 Apr 25.
      Nuclear factor erythroid-related 2-factor 2 (Nrf2) is a transcription factor traditionally thought of as a cellular protector. However, in many cancers, Nrf2 is constitutively activated and correlated with therapeutic resistance. Nrf2 heterodimerizes with small musculoaponeurotic fibrosarcoma Maf (sMAF) transcription factors, allowing binding to the antioxidant responsive element (ARE) and induction of transcription of Nrf2 target genes. While transcription factors are historically challenging to target, stapled peptides have shown great promise for inhibiting these protein-protein interactions. Herein, we describe the first direct cell-permeable inhibitor of Nrf2/sMAF heterodimerization. N1S is a stapled peptide designed based on AlphaFold predictions of the interactions between Nrf2 and sMAF MafG. A cell-based reporter assay combined with in vitro biophysical assays demonstrates that N1S directly inhibits Nrf2/MafG heterodimerization. N1S treatment decreases the transcription of Nrf2-dependent genes and sensitizes Nrf2-dependent cancer cells to cisplatin. Overall, N1S is a promising lead for the sensitization of Nrf2-addicted cancers.
    DOI:  https://doi.org/10.1021/acs.jmedchem.2c02037