bims-nurfca Biomed News
on NRF2 and Cancer
Issue of 2023–03–19
four papers selected by
Caner Geyik, Istinye University



  1. Mol Cells. 2023 Mar 17.
      Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of pro-inflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.
    Keywords:  Keap1; Nrf2; anti-tumor immunity; immunosuppression; tumor microenvironment
    DOI:  https://doi.org/10.14348/molcells.2023.2183
  2. Cell Commun Signal. 2023 Mar 14. 21(1): 61
      Doxorubicin (DOX) is a powerful and commonly used chemotherapeutic drug, used alone or in combination in a variety of cancers, while it has been found to cause serious cardiac side effects in clinical application. More and more researchers are trying to explore the molecular mechanisms of DOX-induced cardiomyopathy (DIC), in which oxidative stress and inflammation are considered to play a significant role. This review summarizes signaling pathways related to oxidative stress and inflammation in DIC and compounds that exert cardioprotective effects by acting on relevant signaling pathways, including the role of Nrf2/Keap1/ARE, Sirt1/p66Shc, Sirt1/PPAR/PGC-1α signaling pathways and NOS, NOX, Fe2+ signaling in oxidative stress, as well as the role of NLRP3/caspase-1/GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/NF-κB pathways in DOX-induced inflammation. Hence, we attempt to explain the mechanisms of DIC in terms of oxidative stress and inflammation, and to provide a theoretical basis or new idea for further drug research on reducing DIC. Video Abstract.
    Keywords:  Cardiomyopathy; Doxorubicin; Inflammation; NF-κB; Nrf2; Oxidative stress; Signaling pathway
    DOI:  https://doi.org/10.1186/s12964-023-01077-5
  3. Eur J Pharmacol. 2023 Mar 13. pii: S0014-2999(23)00166-8. [Epub ahead of print] 175655
      Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
    Keywords:  Cancer cells; Carcinogenesis; Flavonoids; Metabolic reprogramming; Metabolism
    DOI:  https://doi.org/10.1016/j.ejphar.2023.175655
  4. Cell Death Discov. 2023 Mar 13. 9(1): 94
      Oxeiptosis is a recently identified reactive oxygen species (ROS)-sensitive, caspase independent, non-inflammatory regulated cell death pathway. The activation of Kelch-like ECH-associated protein 1-Phosphoglycerate mutase 5-Apoptosis inducing factor mitochondria associated 1 (KEAP1-PGAM5-AIFM1) pathway is the key signaling event in the execution of oxeiptosis. In the present study, we demonstrate that sanguinarine (SNG), a quaternary benzophenanthridine alkaloid, induces oxeiptosis in human colorectal cancer (CRC) cells via ROS, specifically hydrogen peroxide (H2O2)-dependent activation of KEAP1-PGAM5-AIFM1 signaling axis. Whilst, knockdown of KEAP1, PGAM5, and AIFM1 largely abolishes SNG-induced oxeiptosis, hence reinforcing the importance of the role of this pathway in the SNG-mediated cytotoxicity. Moreover, extracellular addition of H2O2 sensitizes SNG-induced oxeiptosis in CRC cells, while removal of intracellular ROS by ROS scavengers, not only alleviated the overproduction of ROS caused by SNG, but also reversed the biochemical events associated with oxeiptosis. Finally, in vivo study demonstrates that SNG effectively reduces the tumor growth in HT-29 xenograft mouse model through features associated with oxeiptosis. This study highlights oxeiptosis as a novel tumor suppressive mechanism and further investigation of the role of oxeiptosis in cancer treatment is warranted.
    DOI:  https://doi.org/10.1038/s41420-023-01376-3