Mol Microbiol. 2022 Mar 24.
Thymine or thymidine starvation induces robust chromosomal fragmentation in E. coli thyA deoCABD mutants, and is proposed to be the cause of thymineless death (TLD). However, fragmentation kinetics challenges the idea that fragmentation causes TLD, by peaking before the onset of TLD and disappearing by the time TLD accelerates. Quantity and kinetics of fragmentation also stays unchanged in hyper-TLD-exhibiting recBCD mutant, making its faster and deeper TLD independent of fragmentation as well. Elimination of fragmentation without affecting cellular metabolism did not abolish TLD in the thyA mutant, but reduced early TLD in the thyA recBCD mutant, suggesting replication-dependent, but undetectable by pulsed field gel, double-strand breaks contributed to TLD. Chromosomal fragmentation, but not TLD, was eliminated in both the thyA and thyA recBCD mutants harboring deoCABD operon. Expression of a single gene, deoA, encoding thymidine phosphorylase, was sufficient to abolish fragmentation, suggesting thymidine-to-thymine interconversion during T-starvation being a key factor. Overall, this study reveals that chromosomal fragmentation, a direct consequence of T-starvation, is either dispensable or redundant for the overall TLD pathology, including hyper-TLD in the recBCD mutant. Replication forks, unlike chromosomal fragmentation, may provide minor contribution to TLD, but only in the repair-deficient thyA deoCABD recBCD mutant.
Keywords: Double-strand breaks; Nucleotide salvage pathway; Replication forks; deoCABD; recBCD