bims-numges Biomed News
on Nucleotide metabolism and genome stability
Issue of 2021–10–17
29 papers selected by
Sean Rudd, Karolinska Institutet



  1. Nat Commun. 2021 Oct 13. 12(1): 5966
      The BRCA2 tumor suppressor protects genome integrity by promoting homologous recombination-based repair of DNA breaks, stability of stalled DNA replication forks and DNA damage-induced cell cycle checkpoints. BRCA2 deficient cells display the radio-resistant DNA synthesis (RDS) phenotype, however the mechanism has remained elusive. Here we show that cells without BRCA2 are unable to sufficiently restrain DNA replication fork progression after DNA damage, and the underrestrained fork progression is due primarily to Primase-Polymerase (PRIMPOL)-mediated repriming of DNA synthesis downstream of lesions, leaving behind single-stranded DNA gaps. Moreover, we find that BRCA2 associates with the essential DNA replication factor MCM10 and this association suppresses PRIMPOL-mediated repriming and ssDNA gap formation, while having no impact on the stability of stalled replication forks. Our findings establish an important function for BRCA2, provide insights into replication fork control during the DNA damage response, and may have implications in tumor suppression and therapy response.
    DOI:  https://doi.org/10.1038/s41467-021-26227-6
  2. Cell Rep. 2021 Oct 12. pii: S2211-1247(21)01283-3. [Epub ahead of print]37(2): 109819
      The AAA+ ATPase VCP regulates the extraction of SUMO and ubiquitin-modified DNA replication factors from chromatin. We have previously described that active DNA synthesis is associated with a SUMO-high/ubiquitin-low environment governed by the deubiquitylase USP7. Here, we unveil a functional cooperation between USP7 and VCP in DNA replication, which is conserved from Caenorhabditis elegans to mammals. The role of VCP in chromatin is defined by its cofactor FAF1, which facilitates the extraction of SUMOylated and ubiquitylated proteins that accumulate after the block of DNA replication in the absence of USP7. The inactivation of USP7 and FAF1 is synthetically lethal both in C. elegans and mammalian cells. In addition, USP7 and VCP inhibitors display synergistic toxicity supporting a functional link between deubiquitylation and extraction of chromatin-bound proteins. Our results suggest that USP7 and VCPFAF1 facilitate DNA replication by controlling the balance of SUMO/Ubiquitin-modified DNA replication factors on chromatin.
    Keywords:  CDC-48; DNA replication; DUB; FAF1; MATH-33; SUMO; UBXN-3; USP7; VCP; ubiquitin
    DOI:  https://doi.org/10.1016/j.celrep.2021.109819
  3. J Exp Clin Cancer Res. 2021 Oct 12. 40(1): 317
       BACKGROUND: SAMHD1 mediates resistance to anti-cancer nucleoside analogues, including cytarabine, decitabine, and nelarabine that are commonly used for the treatment of leukaemia, through cleavage of their triphosphorylated forms. Hence, SAMHD1 inhibitors are promising candidates for the sensitisation of leukaemia cells to nucleoside analogue-based therapy. Here, we investigated the effects of the cytosine analogue CNDAC, which has been proposed to be a SAMHD1 inhibitor, in the context of SAMHD1.
    METHODS: CNDAC was tested in 13 acute myeloid leukaemia (AML) cell lines, in 26 acute lymphoblastic leukaemia (ALL) cell lines, ten AML sublines adapted to various antileukaemic drugs, 24 single cell-derived clonal AML sublines, and primary leukaemic blasts from 24 AML patients. Moreover, 24 CNDAC-resistant sublines of the AML cell lines HL-60 and PL-21 were established. The SAMHD1 gene was disrupted using CRISPR/Cas9 and SAMHD1 depleted using RNAi, and the viral Vpx protein. Forced DCK expression was achieved by lentiviral transduction. SAMHD1 promoter methylation was determined by PCR after treatment of genomic DNA with the methylation-sensitive HpaII endonuclease. Nucleoside (analogue) triphosphate levels were determined by LC-MS/MS. CNDAC interaction with SAMHD1 was analysed by an enzymatic assay and by crystallisation.
    RESULTS: Although the cytosine analogue CNDAC was anticipated to inhibit SAMHD1, SAMHD1 mediated intrinsic CNDAC resistance in leukaemia cells. Accordingly, SAMHD1 depletion increased CNDAC triphosphate (CNDAC-TP) levels and CNDAC toxicity. Enzymatic assays and crystallisation studies confirmed CNDAC-TP to be a SAMHD1 substrate. In 24 CNDAC-adapted acute myeloid leukaemia (AML) sublines, resistance was driven by DCK (catalyses initial nucleoside phosphorylation) loss. CNDAC-adapted sublines displayed cross-resistance only to other DCK substrates (e.g. cytarabine, decitabine). Cell lines adapted to drugs not affected by DCK or SAMHD1 remained CNDAC sensitive. In cytarabine-adapted AML cells, increased SAMHD1 and reduced DCK levels contributed to cytarabine and CNDAC resistance.
    CONCLUSION: Intrinsic and acquired resistance to CNDAC and related nucleoside analogues are driven by different mechanisms. The lack of cross-resistance between SAMHD1/ DCK substrates and non-substrates provides scope for next-line therapies after treatment failure.
    Keywords:  Acquired resistance; Acute lymphoblastic leukemia; Acute myeloid leukemia; CNDAC; DCK; Intrinsic resistance; Leukemia; SAMHD1; Sapacitabine
    DOI:  https://doi.org/10.1186/s13046-021-02093-4
  4. Nucleosides Nucleotides Nucleic Acids. 2021 Oct 13. 1-8
      In June 2021, the Purine and Pyrimidine Society (PPS) organized the 19th biennial symposium on Purine and Pyrimidine metabolism (PP21). Due to the ongoing pandemic, the conference was organized as a webinar over 3 days with sessions dealing with enzymes, cancer, inborn errors, gout among others. The current issue of Nucleosides, Nucleotides & Nucleic Acids is a special issue covering proceedings from PP21-presentations and other PPS-related manuscripts, and in this editorial, we will give an overview of the scientific program of the meeting.
    Keywords:  Purines; cancer; drugs; gout; inborn errors; pyrimidines
    DOI:  https://doi.org/10.1080/15257770.2021.1990316
  5. Nucleic Acids Res. 2021 Oct 13. pii: gkab910. [Epub ahead of print]
      Stimulated by the growing interest in the role of dNTP pools in physiological and malignant processes, we established dNTPpoolDB, the database that offers access to quantitative data on dNTP pools from a wide range of species, experimental and developmental conditions (https://dntppool.org/). The database includes measured absolute or relative cellular levels of the four canonical building blocks of DNA and of exotic dNTPs, as well. In addition to the measured quantity, dNTPpoolDB contains ample information on sample source, dNTP quantitation methods and experimental conditions including any treatments and genetic manipulations. Functions such as the advanced search offering multiple choices from custom-built controlled vocabularies in 15 categories in parallel, the pairwise comparison of any chosen pools, and control-treatment correlations provide users with the possibility to quickly recognize and graphically analyse changes in the dNTP pools in function of a chosen parameter. Unbalanced dNTP pools, as well as the balanced accumulation or depletion of all four dNTPs result in genomic instability. Accordingly, key roles of dNTP pool homeostasis have been demonstrated in cancer progression, development, ageing and viral infections among others. dNTPpoolDB is designated to promote research in these fields and fills a longstanding gap in genome metabolism research.
    DOI:  https://doi.org/10.1093/nar/gkab910
  6. Cell Death Dis. 2021 Oct 13. 12(10): 941
      The recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.
    DOI:  https://doi.org/10.1038/s41419-021-04224-3
  7. Front Genet. 2021 ;12 748033
      Cells must replicate and segregate their DNA to daughter cells accurately to maintain genome stability and prevent cancer. DNA replication is usually fast and accurate, with intrinsic (proofreading) and extrinsic (mismatch repair) error-correction systems. However, replication forks slow or stop when they encounter DNA lesions, natural pause sites, and difficult-to-replicate sequences, or when cells are treated with DNA polymerase inhibitors or hydroxyurea, which depletes nucleotide pools. These challenges are termed replication stress, to which cells respond by activating DNA damage response signaling pathways that delay cell cycle progression, stimulate repair and replication fork restart, or induce apoptosis. Stressed forks are managed by rescue from adjacent forks, repriming, translesion synthesis, template switching, and fork reversal which produces a single-ended double-strand break (seDSB). Stressed forks also collapse to seDSBs when they encounter single-strand nicks or are cleaved by structure-specific nucleases. Reversed and cleaved forks can be restarted by homologous recombination (HR), but seDSBs pose risks of mis-rejoining by non-homologous end-joining (NHEJ) to other DSBs, causing genome rearrangements. HR requires resection of broken ends to create 3' single-stranded DNA for RAD51 recombinase loading, and resected ends are refractory to repair by NHEJ. This Mini Review highlights mechanisms that help maintain genome stability by promoting resection of seDSBs and accurate fork restart by HR.
    Keywords:  DNA damage; DNA double-strand breaks; genome instability; replication stress; structure-specific nucleases
    DOI:  https://doi.org/10.3389/fgene.2021.748033
  8. J Biol Chem. 2021 Oct 11. pii: S0021-9258(21)01107-8. [Epub ahead of print] 101301
      Lamin-A/C provides a nuclear scaffold for compartmentalization of genome function that is important for genome integrity. Lamin-A/C dysfunction is associated with cancer, aging, and degenerative diseases. The mechanisms whereby lamin-A/C regulates genome stability remain poorly understood. We demonstrate a crucial role for lamin-A/C in DNA replication. We show that lamin-A/C binds to nascent DNA, especially during replication stress (RS), ensuring the recruitment of replication fork protective factors RPA and RAD51. These ssDNA-binding proteins, considered the first and second responders to RS respectively, function in the stabilization, remodeling, and repair of the stalled fork to ensure proper restart and genome stability. Reduced recruitment of RPA and RAD51 upon lamin-A/C depletion elicits replication fork instability (RFI) characterized by MRE11 nuclease-mediated degradation of nascent DNA, RS-induced DNA damage, and sensitivity to replication inhibitors. Importantly, unlike homologous recombination-deficient cells, RFI in lamin-A/C-depleted cells is not linked to replication fork reversal. Thus, the point of entry of nucleases is not the reversed fork, but regions of ssDNA generated during RS that are not protected by RPA and RAD51. Consistently, RFI in lamin-A/C-depleted cells is rescued by exogenous overexpression of RPA or RAD51. These data unveil involvement of structural nuclear proteins in the protection of ssDNA from nucleases during RS by promoting recruitment of RPA and RAD51 to stalled forks. Supporting this model, we show physical interaction between RPA and lamin-A/C. We suggest that RS is a major source of genomic instability in laminopathies and in lamin-A/C-deficient tumors.
    Keywords:  DNA damage; DNA replication; genomic instability; nuclear envelope; nuclear lamina
    DOI:  https://doi.org/10.1016/j.jbc.2021.101301
  9. DNA Repair (Amst). 2021 Sep 25. pii: S1568-7864(21)00187-7. [Epub ahead of print]108 103231
      The Base Excision Repair (BER) pathway is a highly conserved DNA repair system targeting chemical base modifications that arise from oxidation, deamination and alkylation reactions. BER features lesion-specific DNA glycosylases (DGs) which recognize and excise modified or inappropriate DNA bases to produce apurinic/apyrimidinic (AP) sites and coordinate AP-site hand-off to subsequent BER pathway enzymes. The DG superfamilies identified have evolved independently to cope with a wide variety of nucleobase chemical modifications. Most DG superfamilies recognize a distinct set of structurally related lesions. In contrast, the Helix-hairpin-Helix (HhH) DG superfamily has the remarkable ability to act upon structurally diverse sets of base modifications. The versatility in substrate recognition of the HhH-DG superfamily has been shaped by motif and domain acquisitions during evolution. In this paper, we review the structural features and catalytic mechanisms of the HhH-DG superfamily and draw a hypothetical reconstruction of the evolutionary path where these DGs developed diverse and unique enzymatic features.
    Keywords:  Base damage; Base excision repair; DNA Glycosylase; Enzyme mechanism; Structure and evolution
    DOI:  https://doi.org/10.1016/j.dnarep.2021.103231
  10. Annu Rev Med. 2021 Oct 13.
      Innate immunity and the DNA damage response (DDR) pathway are inextricably linked. Within the DDR, ataxia telangiectasia and Rad3-related (ATR) is a key kinase responsible for sensing replication stress and facilitating DNA repair through checkpoint activation, cell cycle arrest, and promotion of fork recovery. Recent studies have shed light on the immunomodulatory role of the ATR-CHK1 pathway in the tumor microenvironment and the specific effects of ATR inhibition in stimulating an innate immune response. With several potent and selective ATR inhibitors in developmental pipelines, the combination of dual ATR and PD-(L)1 blockade has attracted increasing interest in cancer therapy. In this review, we summarize the clinical and preclinical data supporting the combined inhibition of ATR and PD-(L)1, discuss the potential challenges surrounding this approach, and highlight biomarkers relevant for selected patients who are most likely to benefit from the blockade of these two checkpoints. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-med-042320-025136
  11. Mutagenesis. 2021 Oct 13. pii: geab038. [Epub ahead of print]
      Reactive oxygen species formation and resultant oxidative damage to DNA are ubiquitous events in cells, the homeostasis of which can be dysregulated in a range of pathological conditions. Base excision repair is the primary repair mechanism for oxidative genomic DNA damage. One prevalent oxidized base modification, 8-oxoguanine (8-oxoG) is recognised by 8-oxoguanine glycosylase-1 (OGG1) initiating removal and repair via base excision repair (BER). Surprisingly, Ogg1 null mouse embryonic fibroblasts (mOgg1 -/- MEFs) do not accumulate 8-oxoG in the genome to the extent expected. This suggests that there are back-up repair mechanisms capable of repairing 8-oxoG in the absence of OGG1. In the current study we identified components of NER (Ercc1, Ercc4, Ercc5), BER (Lig1, Tdg, Nthl1, Mpg, Mgmt, NEIL3), MMR (Mlh1, Msh2, Msh6) and DSB (Brip1, Rad51d, Prkdc) pathways that are transcriptionally elevated in mOgg1 -/- MEFs. Interestingly, all three nucleotide excision repair genes identified: Ercc1 (2.5 ± 0.2-fold), Ercc4 (1.5 ± 0.1-fold) and Ercc5 (1.7 ± 0.2-fold) have incision activity. There was also a significant functional increase in NER activity (42.0 ± 7.9%) compared to WT MEFs. We also observed up-regulation of both Neil3 mRNA (37.9 ± 1.6-fold) and protein in mOgg1 -/- MEFs. This was associated with a 3.4 ± 0.4-fold increase in NEIL3 substrate sites in genomic DNA of cells treated with BSO, consistent with the ability of NEIL3 to remove 8-oxoG oxidation products from genomic DNA. In conclusion, we suggest that in Ogg1-null cells, upregulation of multiple DNA repair proteins including incision components of the NER pathway and Neil3 are important compensatory responses to prevent accumulation of genomic 8-oxoG.
    Keywords:  Backup Repair; OGG1; Oxidative DNA damage
    DOI:  https://doi.org/10.1093/mutage/geab038
  12. Cancer Lett. 2021 Oct 11. pii: S0304-3835(21)00511-5. [Epub ahead of print]
      Although the DNA damage response (DDR) is associated with the radioresistance characteristics of lung cancer cells, the specific regulators and underlying mechanisms of the DDR are unclear. Here, we identified the serine proteinase inhibitor clade E member 2 (SERPINE2) as a modulator of radiosensitivity and the DDR in lung cancer. Cells exhibiting radioresistance after ionizing radiation show upregulation of SERPINE2, and SERPINE2 knockdown improves tumor radiosensitivity in vitro and in vivo. Functionally, SERPINE2 deficiency causes a reduction in homologous recombination repair, rapid recovery of cell cycle checkpoints, and suppression of migration and invasion. Mechanistically, SERPINE2 knockdown inhibits the accumulation of p-ATM and the downstream repair protein RAD51 during DNA repair, and RAD51 can restore DNA damage and radioresistance phenotypes in lung cancer cells. Furthermore, SERPINE2 can directly interact with MRE11 and ATM to facilitate its phosphorylation in HR-mediated DSB repair. In addition, high SERPINE2 expression correlates with dismal prognosis in lung adenocarcinoma patients, and a high serum SERPINE2 concentration predicts a poor response to radiotherapy in non-small cell lung cancer patients. In summary, these findings indicate a novel regulatory mechanism by which SERPINE2 modulates the DDR and radioresistance in lung cancer.
    Keywords:  ATM; DNA damage response; Homologous recombination; SERPINE2; radioresistance
    DOI:  https://doi.org/10.1016/j.canlet.2021.10.001
  13. Int J Mol Sci. 2021 Oct 01. pii: 10689. [Epub ahead of print]22(19):
      During the cell cycle, DNA suffers several lesions that need to be repaired prior to entry into mitosis to preserve genome integrity in daughter cells. Toward this aim, cells have developed complex enzymatic machinery, the so-called DNA damage response (DDR), which is able to repair DNA, temporarily stopping the cell cycle to provide more time to repair, or if the damage is too severe, inducing apoptosis. This DDR mechanism is considered the main source of resistance to DNA-damaging therapeutic treatments in oncology. Recently, cancer stem cells (CSCs), which are a small subset of tumor cells, were identified as tumor-initiating cells. CSCs possess self-renewal potential and persistent tumorigenic capacity, allowing for tumor re-growth and relapse. Compared with cancer cells, CSCs are more resistant to therapeutic treatments. Wee1 is the principal gatekeeper for both G2/M and S-phase checkpoints, where it plays a key role in cell cycle regulation and DNA damage repair. From this perspective, Wee1 inhibition might increase the effectiveness of DNA-damaging treatments, such as radiotherapy, forcing tumor cells and CSCs to enter into mitosis, even with damaged DNA, leading to mitotic catastrophe and subsequent cell death.
    Keywords:  Wee1 kinase; cell cycle; tumor resistance
    DOI:  https://doi.org/10.3390/ijms221910689
  14. Int J Mol Sci. 2021 Oct 01. pii: 10687. [Epub ahead of print]22(19):
      Retinoblastoma is the most common intraocular cancer in childhood. Loss of function in both copies of the RB1 gene is the causal mutation of retinoblastoma. Current treatment for retinoblastoma includes the use of chemotherapeutic agents, such as the DNA damaging agent etoposide, which is a topoisomerase II poison that mainly generates DNA double-strand breaks (DSBs) and genome instability. Unfaithful repairing of DSBs could lead to secondary cancers and serious side effects. Previously, we found that RB knocked-down mammalian cells depend on a highly mutagenic pathway, the micro-homology mediated end joining (MMEJ) pathway, to repair DSBs. Poly ADP ribose polymerase 1 (PARP1) is a major protein in promoting the MMEJ pathway. In this study, we explored the effects of olaparib, a PARP inhibitor, in killing retinoblastoma cells. Retinoblastoma cell line Y79 and primary retinoblastoma cells expressed the cone-rod homeobox protein (CRX), a photoreceptor-specific marker. No detectable RB expression was found in these cells. The co-treatment of olaparib and etoposide led to enhanced cell death in both the Y79 cells and the primary retinoblastoma cells. Our results demonstrated the killing effects in retinoblastoma cells by PARP inhibitor olaparib after inducing DNA double-strand breaks. The use of olaparib in combination with etoposide could improve the cell-killing effects. Thus, lower dosages of etoposide can be used to treat retinoblastoma, which would potentially lead to a lower level of DSBs and a relatively more stable genome.
    Keywords:  DNA double-strand break repair; PARP inhibitor; etoposide; olaparib; retinoblastoma
    DOI:  https://doi.org/10.3390/ijms221910687
  15. Sci Rep. 2021 Oct 12. 11(1): 20256
      Maintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.
    DOI:  https://doi.org/10.1038/s41598-021-99355-0
  16. Int J Mol Sci. 2021 Sep 27. pii: 10384. [Epub ahead of print]22(19):
      Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure "chromatin". Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.
    Keywords:  DNA damage; DNA double-strand break; DNA repair; chromatin; epigenetics; genome integrity; histone acetylation; histone methylation
    DOI:  https://doi.org/10.3390/ijms221910384
  17. Int J Mol Sci. 2021 Sep 27. pii: 10406. [Epub ahead of print]22(19):
      Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells, and accounts for 10% of all hematologic malignancies and 1% of all cancers. MM is characterized by genomic instability which results from DNA damage with certain genomic rearrangements being prognostic factors for the disease and patients' clinical response. Following genotoxic stress, the evolutionary conserved DNA damage response (DDR) is activated and, in turn, coordinates DNA repair with cell-cycle events. However, the process of carcinogenesis cannot be attributed only to the genetic alterations, but also involves epigenetic processes. Regulation of expression and activity of key players in DNA repair and checkpoint proteins are essential and mediated partly by posttranslational modifications (PTM), such as acetylation. Crosstalk between different PTMs is important for regulation of DNA repair pathways. Acetylation, which is mediated by acetyltransferases (HAT) and histone deacetylases (HDAC), not only affects gene expression through its modulation of histone tails but also has recently been implicated in regulating non-histone proteins. Currently, several HDAC inhibitors (HDACi) have been developed both in pre-clinical and clinical studies, with some of them exhibiting significant anti-MM activities. Due to reversibility of epigenetic changes during the evolutionary process of myeloma genesis, the potency of epigenetic therapies seems to be of great importance. The aim of the present paper is the summary of all data on the role of HDACi in DDR, the interference with each DNA repair mechanism and the therapeutic implications of HDACi in MM.
    Keywords:  DNA-damage; HDAC inhibitors; histone deacetylases; multiple myeloma
    DOI:  https://doi.org/10.3390/ijms221910406
  18. Int J Mol Sci. 2021 Oct 05. pii: 10759. [Epub ahead of print]22(19):
      Synchronous cell populations are commonly used for the analysis of various aspects of cellular metabolism at specific stages of the cell cycle. Cell synchronization at a chosen cell cycle stage is most frequently achieved by inhibition of specific metabolic pathway(s). In this respect, various protocols have been developed to synchronize cells in particular cell cycle stages. In this review, we provide an overview of the protocols for cell synchronization of mammalian cells based on the inhibition of synthesis of DNA building blocks-deoxynucleotides and/or inhibition of DNA synthesis. The mechanism of action, examples of their use, and advantages and disadvantages are described with the aim of providing a guide for the selection of suitable protocol for different studied situations.
    Keywords:  DNA replication; S phase; cell cycle; deoxyribonucleotide triphosphates synthesis; ribonucleotide reductase; thymidine; thymidylate synthase
    DOI:  https://doi.org/10.3390/ijms221910759
  19. Cancers (Basel). 2021 Sep 26. pii: 4818. [Epub ahead of print]13(19):
      Cancer stem cells (CSCs) are pluripotent and highly tumorigenic cells that can re-populate a tumor and cause relapses even after initially successful therapy. As with tissue stem cells, CSCs possess enhanced DNA repair mechanisms. An active DNA damage response alleviates the increased oxidative and replicative stress and leads to therapy resistance. On the other hand, mutations in DNA repair genes cause genomic instability, therefore driving tumor evolution and developing highly aggressive CSC phenotypes. However, the role of DNA repair proteins in CSCs extends beyond the level of DNA damage. In recent years, more and more studies have reported the unexpected role of DNA repair proteins in the regulation of transcription, CSC signaling pathways, intracellular levels of reactive oxygen species (ROS), and epithelial-mesenchymal transition (EMT). Moreover, DNA damage signaling plays an essential role in the immune response towards tumor cells. Due to its high importance for the CSC phenotype and treatment resistance, the DNA damage response is a promising target for individualized therapies. Furthermore, understanding the dependence of CSC on DNA repair pathways can be therapeutically exploited to induce synthetic lethality and sensitize CSCs to anti-cancer therapies. This review discusses the different roles of DNA repair proteins in CSC maintenance and their potential as therapeutic targets.
    Keywords:  DNA repair; cancer stem cells; cancer therapy; genomic instability; immune response; oxidative stress; replicative stress; reprogramming
    DOI:  https://doi.org/10.3390/cancers13194818
  20. Angew Chem Int Ed Engl. 2021 Oct 11.
      DNA-Protein Cross-links (DPCs) between DNA epigenetic mark 5-formylC and lysine residues of histone proteins spontaneously form in human cells. Such conjugates are likely to influence chromatin structure and mediate DNA replication, transcription, and repair, but are challenging to study due to their reversible nature. Here we report the construction of site specific, hydrolytically stable DPCs between 5fdC in DNA and K4 of histone H3 and an investigation of their effects on DNA replication. Our approach employs oxime ligation, allowing for site-specific conjugation of histones to DNA under physiological conditions. Primer extension experiments revealed that histone H3-DNA crosslinks blocked DNA synthesis by hPol η polymerase, but were bypassed following proteolytic processing.
    Keywords:  5-formyl-dC; DNA-Protein cross-link; Histone; Oxime ligation; Polymerase bypass
    DOI:  https://doi.org/10.1002/anie.202109418
  21. Oncogene. 2021 Oct 13.
      Colorectal carcinoma (CRC) is the second most deadly cancer worldwide. Therapies that take advantage of DNA repair defects have been explored in various tumors but not yet systematically in CRC. Here, we found that Diphosphoinositol Pentakisphosphate Kinase 2 (PPIP5K2), an inositol pyrophosphate kinase, was highly expressed in CRC and associated with a poor prognosis of CRC patients. In vitro and in vivo functional studies demonstrated that PPIP5K2 could promote the proliferation and migration ability of CRC cells independent of its inositol pyrophosphate kinase activity. Mechanically, S1006 dephosphorylation of PPIP5K2 could accelerate its dissociation with 14-3-3 in the cytoplasm, resulting in more nuclear distribution. Moreover, DNA damage treatments such as doxorubicin (DOX) or irradiation (IR) could induce nuclear translocation of PPIP5K2, which subsequently promoted homologous recombination (HR) repair by binding and recruiting RPA70 to the DNA damage site as a novel scaffold protein. Importantly, we verified that S1006 dephosphorylation of PPIP5K2 could significantly enhance the DNA repair ability of CRC cells through a series of DNA repair phenotype assays. In conclusion, PPIP5K2 is critical for enhancing the survival of CRC cells via facilitating DNA HR repair. Our findings revealed an unrecognized biological function and mechanism model of PPIP5K2 dependent on S1006 phosphorylation and provided a potential therapeutic target for CRC patients.
    DOI:  https://doi.org/10.1038/s41388-021-02052-5
  22. Front Pharmacol. 2021 ;12 746925
      
    Keywords:  ecto-5′-nucleotidase; inhibitors; metalloenzymes; nucleoside triphosphate diphosphohydrolases; nucleotide pyrophosphatase/phosphodiesterases
    DOI:  https://doi.org/10.3389/fphar.2021.746925
  23. Front Oncol. 2021 ;11 703802
      Triple-negative breast cancer (TNBC) has poor prognosis with limited treatment options, with little therapeutic progress made during the past several decades. DNA damage response (DDR) associated therapies, including radiation and inhibitors of DDR, demonstrate potential efficacy against TNBC, especially under the guidance of genomic subtype-directed treatment. The tumor immune microenvironment also contributes greatly to TNBC malignancy and response to conventional and targeted therapies. Immunotherapy represents a developing trend in targeted therapies directed against TNBC and strategies combining immunotherapy and modulators of the DDR pathways are being pursued. There is increasing understanding of the potential interplay between DDR pathways and immune-associated signaling. As such, the question of how we treat TNBC regarding novel immuno-molecular strategies is continually evolving. In this review, we explore the current and upcoming treatment options of TNBC in the context of DNA repair mechanisms and immune-based therapies, with a focus on implications of recent genomic analyses and clinical trial findings.
    Keywords:  DDR (DNA damage response); DNA repair; PARP inhibition (PARPi); PD-1 - PD-L1 axis; TNBC; breast cancer; immunotherapy
    DOI:  https://doi.org/10.3389/fonc.2021.703802
  24. Cell Rep. 2021 Oct 12. pii: S2211-1247(21)01268-7. [Epub ahead of print]37(2): 109808
      One of the most intriguing features of cell-cycle control is that, although there are multiple cyclin-dependent kinases (CDKs) in higher eukaryotes, a single CDK is responsible for both G1-S and G2-M in yeasts. By leveraging a rapid conditional silencing system in human cell lines, we confirm that CDK1 assumes the role of G1-S CDK in the absence of CDK2. Unexpectedly, CDK1 deficiency does not prevent mitotic entry. Nonetheless, inadequate phosphorylation of mitotic substrates by noncanonical cyclin B-CDK2 complexes does not allow progression beyond metaphase and underscores deleterious late mitotic events, including the uncoupling of anaphase A and B and cytokinesis. Elevation of CDK2 to a level similar to CDK1 overcomes the mitotic defects caused by CDK1 deficiency, indicating that the relatively low concentration of CDK2 accounts for the defective anaphase. Collectively, these results reveal that the difference between G2-M and G1-S CDKs in human cells is essentially quantitative.
    Keywords:  cyclin; cyclin-dependent kinases; genome instability; mitosis
    DOI:  https://doi.org/10.1016/j.celrep.2021.109808
  25. NPJ Breast Cancer. 2021 Oct 11. 7(1): 135
      Pathogenic germline mutations in the RAD51 paralog genes RAD51C and RAD51D, are known to confer susceptibility to ovarian and triple-negative breast cancer. Here, we investigated whether germline loss-of-function variants affecting another RAD51 paralog gene, RAD51B, are also associated with breast and ovarian cancer. Among 3422 consecutively accrued breast and ovarian cancer patients consented to tumor/germline sequencing, the observed carrier frequency of loss-of-function germline RAD51B variants was significantly higher than control cases from the gnomAD population database (0.26% vs 0.09%), with an odds ratio of 2.69 (95% CI: 1.4-5.3). Furthermore, we demonstrate that tumors harboring biallelic RAD51B alteration are deficient in homologous recombination DNA repair deficiency (HRD), as evidenced by analysis of sequencing data and in vitro functional assays. Our findings suggest that RAD51B should be considered as an addition to clinical germline testing panels for breast and ovarian cancer susceptibility.
    DOI:  https://doi.org/10.1038/s41523-021-00339-0
  26. Cell Mol Life Sci. 2021 Oct 13.
      High-affinity uptake of natural nucleosides as well as nucleoside derivatives used in anticancer therapies is mediated by human concentrative nucleoside transporters (hCNTs). hCNT1, the hCNT family member that specifically transports pyrimidines, is also a transceptor involved in tumor progression. In particular, oncogenesis appears to be associated with hCNT1 downregulation in some cancers, although the underlying mechanisms are largely unknown. Here, we sought to address changes in colorectal and pancreatic ductal adenocarcinoma-both of which are important digestive cancers-in the context of treatment with fluoropyrimidine derivatives. An analysis of cancer samples and matching non-tumoral adjacent tissues revealed downregulation of hCNT1 protein in both types of tumor. Further exploration of the putative regulation of hCNT1 by microRNAs (miRNAs), which are highly deregulated in these cancers, revealed a direct relationship between the oncomiRs miR-106a and miR-17 and the loss of hCNT1. Collectively, our findings provide the first demonstration that hCNT1 inhibition by these oncomiRs could contribute to chemoresistance to fluoropyrimidine-based treatments in colorectal and pancreatic cancer.
    Keywords:  CNT1; Chemoresistance; Non-coding RNA; Nucleoside analog; Nucleoside transporter
    DOI:  https://doi.org/10.1007/s00018-021-03959-8
  27. Mol Cancer Res. 2021 Oct 15. pii: molcanres.0448.2021. [Epub ahead of print]
      Loss of function somatic mutations of STK11, a tumor suppressor gene encoding LKB1 that contributes to the altered metabolic phenotype of cancer cells, is the second most common event in lung adenocarcinomas and often co-occurs with activating KRAS mutations. Tumor cells lacking LKB1 display an aggressive phenotype, with uncontrolled cell growth and higher energetic and redox stress due to its failure to balance ATP and NADPH levels in response to cellular stimulus. The identification of effective therapeutic regimens for LKB1-deficient non-small cell lung cancer (NSCLC) patients remains a major clinical need. Here, we report that LKB1-deficient NSCLC tumor cells displayed reduced basal levels of ATP and to a lesser extent other nucleotides, and markedly enhanced sensitivity to 8-Cl-adenosine (8-Cl-Ado), an energy-depleting nucleoside analogue. Treatment with 8-Cl-Ado depleted intracellular ATP levels, raised redox stress and induced cell death leading to a compensatory suppression of mTOR signaling in LKB1-intact, but not LKB1-deficient, cells. Proteomic analysis revealed that the MAPK/MEK/ERK and PI3K/AKT pathways were activated in response to 8-Cl-Ado treatment and targeting these pathways enhanced the anti-tumor efficacy of 8-Cl-Ado. Implications: Together, our findings demonstrate that LKB1-deficient tumor cells are selectively sensitive to 8-Cl-Ado and suggest that therapeutic approaches targeting vulnerable energy stores combined with signaling pathway inhibitors merit further investigation for this patient population.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-21-0448
  28. Front Pharmacol. 2021 ;12 718675
      Malignant pleural mesothelioma (MPM) is an invasive malignancy that develops in the pleural cavity, and antifolates are used as chemotherapeutics for treating. The majority of antifolates, including pemetrexed (PMX), inhibit enzymes involved in purine and pyrimidine synthesis. MPM patients frequently develop drug resistance in clinical practice, however the associated drug-resistance mechanism is not well understood. This study was aimed to elucidate the mechanism underlying resistance to PMX in MPM cell lines. We found that among the differentially expressed genes associated with drug resistance (determined by RNA sequencing), TYMS expression was higher in the established resistant cell lines than in the parental cell lines. Knocking down TYMS expression significantly reduced drug resistance in the resistant cell lines. Conversely, TYMS overexpression significantly increased drug resistance in the parental cells. Metabolomics analysis revealed that the levels of dTMP were higher in the resistant cell lines than in the parental cell lines; however, resistant cells showed no changes in dTTP levels after PMX treatment. We found that the nucleic acid-biosynthetic pathway is important for predicting the efficacy of PMX in MPM cells. The results of chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays suggested that H3K27 acetylation in the 5'-UTR of TYMS may promote its expression in drug-resistant cells. Our findings indicate that the intracellular levels of dTMP are potential biomarkers for the effective treatment of patients with MPM and suggest the importance of regulatory mechanisms of TYMS expression in the disease.
    Keywords:  H3K27ac; drug-resistance; mesothelioma; thymidylate synthase; tumor metabolism
    DOI:  https://doi.org/10.3389/fphar.2021.718675
  29. Int J Mol Sci. 2021 Sep 23. pii: 10253. [Epub ahead of print]22(19):
      CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) is a multifunctional protein that participates in the initial three speed-limiting steps of pyrimidine nucleotide synthesis. Over the past two decades, extensive investigations have been conducted to unmask CAD as a central player for the synthesis of nucleic acids, active intermediates, and cell membranes. Meanwhile, the important role of CAD in various physiopathological processes has also been emphasized. Deregulation of CAD-related pathways or CAD mutations cause cancer, neurological disorders, and inherited metabolic diseases. Here, we review the structure, function, and regulation of CAD in mammalian physiology as well as human diseases, and provide insights into the potential to target CAD in future clinical applications.
    Keywords:  aspartate transcarbamoylase; cancer; carbamoyl phosphate synthetase; dihydroorotase; diseases; pyrimidine; regulation
    DOI:  https://doi.org/10.3390/ijms221910253