J Biol Chem. 2020 Feb 07. pii: S0021-9258(17)49866-8. [Epub ahead of print]295(6):
1685-1693
The adenine, cytosine, and guanine bases of DNA are susceptible to alkylation by the aldehyde products of lipid peroxidation and by the metabolic byproducts of vinyl chloride pollutants. The resulting adducts spontaneously cyclize to form harmful etheno lesions. Cells employ a variety of DNA repair pathways to protect themselves from these pro-mutagenic modifications. Human alkyladenine DNA glycosylase (AAG) is thought to initiate base excision repair of both 1,N6-ethenoadenine (ϵA) and 1,N2-ethenoguanine (ϵG). However, it is not clear how AAG might accommodate ϵG in an active site that is complementary to ϵA. This prompted a thorough investigation of AAG-catalyzed excision of ϵG from several relevant contexts. Using single-turnover and multiple-turnover kinetic analyses, we found that ϵG in its natural ϵG·C context is very poorly recognized relative to ϵA·T. Bulged and mispaired ϵG contexts, which can form during DNA replication, were similarly poor substrates for AAG. Furthermore, AAG could not recognize an ϵG site in competition with excess undamaged DNA sites. Guided by previous structural studies, we hypothesized that Asn-169, a conserved residue in the AAG active-site pocket, contributes to discrimination against ϵG. Consistent with this model, the N169S variant of AAG was 7-fold more active for excision of ϵG compared with the wildtype (WT) enzyme. Taken together, these findings suggest that ϵG is not a primary substrate of AAG, and that current models for etheno lesion repair in humans should be revised. We propose that other repair and tolerance mechanisms operate in the case of ϵG lesions.
Keywords: DNA alkylation; DNA damage; DNA repair; alkyladenine DNA glycosylase; base excision repair (BER); enzyme kinetics; ethenoguanine; substrate specificity