bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2023–11–19
three papers selected by
Sara Mingu, Johannes Gutenberg University



  1. Int J Mol Sci. 2023 Oct 30. pii: 15771. [Epub ahead of print]24(21):
      Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
    Keywords:  Elys; LAD; TAD; heterochromatin; lamin; nuclear envelope; nuclear lamina; nuclear periphery; nuclear pore complex; nucleoporin
    DOI:  https://doi.org/10.3390/ijms242115771
  2. Biophys Rev. 2023 Oct;15(5): 1195-1207
      Nuclear cytoplasmic transport is mediated by many receptors that recognize specific nuclear localization signals on proteins and RNA and transport these substrates through nuclear pore complexes. Facilitated diffusion through nuclear pore complexes requires the attachment of transport receptors. Despite the relatively large tunnel diameter, some even small proteins (less than 20-30 kDa), such as histones, pass through the nuclear pore complex only with transport receptors. Over several decades, considerable material has been accumulated on the structure, architecture, and amino acid composition of the proteins included in this complex and the sequence of many receptors. We consider the data available in the literature on the structure of the nuclear pore complex and possible mechanisms of nuclear-cytoplasmic transport, applying the theory of electrostatic interactions in the context of our data on changes in the electrokinetic potential of nuclei and our previously proposed physical model of the mechanism of facilitated diffusion through the nuclear pore complex (NPC). According to our data, the main contribution to the charge of the nuclear membrane is made by anionic phospholipids, which are part of both the nuclear membrane and the nuclear matrix, which creates a potential difference between them. The nuclear membrane is a four-layer phospholipid dielectric, so the potential vector can only pass through the NPC, creating an electrostatic funnel that "pulls in" the positively charged load-NLS-NTR trigger complexes. Considering the newly obtained data, an improved model of the previously proposed physical model of the mechanism of nuclear-cytoplasmic transport is proposed. This model considers the contribution of electrostatic fields to the transportation speed when changing the membrane's thickness in the NPC basket at a higher load.
    Keywords:  Anionic phospholipid; Electrokinetic potential; Electrostatic funnel; Nuclear fractions; Wheat seedlings
    DOI:  https://doi.org/10.1007/s12551-023-01136-8
  3. Sci Rep. 2023 Nov 13. 13(1): 19800
      Fusion of multiple chemically identical complexes, so-called particles, in localization microscopy, can improve the signal-to-noise ratio and overcome under-labeling. To this end, structural homogeneity of the data must be assumed. Biological heterogeneity, however, could be present in the data originating from distinct conformational variations or (continuous) variations in particle shapes. We present a prior-knowledge-free method for detecting continuous structural variations with localization microscopy. Detecting this heterogeneity leads to more faithful fusions and reconstructions of the localization microscopy data as their heterogeneity is taken into account. In experimental datasets, we show the continuous variation of the height of DNA origami tetrahedrons imaged with 3D PAINT and of the radius of Nuclear Pore Complexes imaged in 2D with STORM. In simulation, we study the impact on the heterogeneity detection pipeline of Degree Of Labeling and of structural variations in the form of two independent modes.
    DOI:  https://doi.org/10.1038/s41598-023-46488-z