bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2023‒03‒12
two papers selected by
Sara Mingu
Johannes Gutenberg University


  1. Am J Cancer Res. 2023 ;13(2): 485-497
      Nuclear pore membrane protein 121 (POM121) is a part of the nuclear pore complex, which regulates intracellular signaling and maintains normal cellular functions. However, the role of POM121 in gastric cancer (GC) remains unclear. Quantitative real-time polymerase chain reaction was performed to detect POM121 mRNA in 36 pairs of GC and adjacent non-tumor tissues. POM121 protein expression was determined by immunohistochemistry in 648 GC tissues and 121 normal gastric tissues. Connections between POM121 levels, clinicopathological parameters, and the prognosis of GC patients were explored. The influence of POM121 on proliferation, migration, and invasion was detected in vitro and vivo. The mechanism underlying the involvement of POM121 in GC progression was demonstrated via bioinformatics analysis and Western blot. Both the mRNA and protein levels of POM121 in GC tissues were higher than those in normal gastric tissues. High POM121 expression in GC was associated with deep invasion, advanced distant metastases and TNM stage, and positive HER2 expression. A negative connection was found between POM121 expression and the overall survival (OS) of GC patients. Downregulation of POM121 inhibited the proliferation, clone formation, migration, and invasion of GC cells, and overexpression of POM121 showed the opposite trend. POM121 promoted the phosphorylation of PI3K/AKT pathway and increased the expression of MYC. In conclusion, this study suggested that POM121 has the potential to act as an independent prognostic factor for GC patients.
    Keywords:  MYC; PI3K/AKT; POM121; gastric cancer; metastasis; proliferation
  2. Data Brief. 2023 Apr;47 108988
      53BP1 (TP53-binding protein 1), a key player in DNA double-strand break repair, has a classical bipartite nuclear localization signal (NLS) of sequence 1666-GKRKLITSEEERSPAKRGRKS-1686 that binds to importin-α, a nuclear import adaptor protein. Nucleoporin Nup153 is involved in nuclear import of 53BP1, and the binding of Nup153 to importin-α has been proposed to promote efficient import of classical NLS-containing proteins. Here, the ARM-repeat domain of human importin-α3 bound to 53BP1 NLS was crystallized in the presence of a synthetic peptide corresponding to the extreme C-terminus of Nup153 (sequence: 1459-GTSFSGRKIKTAVRRRK-1475). The crystal belonged to space group I2, with unit-cell parameters a = 95.70, b = 79.60, c = 117.44 Å, β = 95.57°. The crystal diffracted X-rays to 1.9 Å resolution, and the structure was solved by molecular replacement. The asymmetric unit contained two molecules of importin-α3 and two molecules of 53BP1 NLS. Although no convincing density was observed for the Nup153 peptide, the electron density corresponding to 53BP1 NLS was unambiguous and continuous along the entire length of the bipartite NLS. The structure revealed a novel dimer of importin-α3, in which two protomers of importin-α3 are bridged by the bipartite NLS of 53BP1. In this structure, the upstream basic cluster of the NLS is bound to the minor NLS-binding site of one protomer of importin-α3, whereas the downstream basic cluster of the same chain of NLS is bound to the major NLS-binding site of another protomer of importin-α3. This quaternary structure is distinctly different from the previously determined crystal structure of mouse importin-α1 bound to the 53BP1 NLS. The atomic coordinates and structure factors have been deposited in the Protein Data Bank (accession code 8HKW).
    Keywords:  Crystallization; Dimerization; Nuclear import; Nuclear localization signal; Nuclear transport receptor
    DOI:  https://doi.org/10.1016/j.dib.2023.108988