bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2023‒02‒05
four papers selected by
Sara Mingu
Johannes Gutenberg University


  1. Brain. 2023 Feb 03. pii: awad033. [Epub ahead of print]
      Biallelic loss of function (LoF) variants in SMPD4 cause a rare and severe neurodevelopmental disorder with progressive congenital microcephaly and early death. SMPD4 encodes a sphingomyelinase that hydrolyzes sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope (NE), and interacts with nuclear pore complexes (NPC). We refine the clinical phenotype of LoF SMPD4 variants by describing five individuals from three unrelated families with longitudinal data due to prolonged survival. All individuals surviving beyond infancy developed insulin-dependent diabetes, besides presenting with a severe neurodevelopmental disorder (NDD) and microcephaly, making diabetes one of the most frequent age-dependent non-cerebral abnormalities. We studied the function of SMPD4 at the cellular and organ levels. Knock-down of SMPD4 in human neural stem cells, causes reduced proliferation rates and prolonged mitosis. Moreover, SMPD4 depletion results in abnormal NE breakdown and reassembly during mitosis and decreased post-mitotic NPC insertion. Fibroblasts from affected individuals show deficient SMPD4-specific neutral sphingomyelinase activity, without changing (sub)cellular lipidome fractions, which suggests a local function of SMPD4 on the NE. In embryonic mouse brain, knockdown of Smpd4 impairs cortical progenitor proliferation and induces premature differentiation by altering the balance between neurogenic and proliferative progenitor cell divisions. We hypothesize that, in individuals with SMPD4-related disease, NE bending, which is needed to insert NPCs in the nuclear envelope, is impaired in the absence of SMPD4, and interferes with cerebral corticogenesis and survival of pancreatic beta cells.
    Keywords:  SMPD4; insulin dependent diabetes; lipid homeostasis; microcephaly; nuclear envelope
    DOI:  https://doi.org/10.1093/brain/awad033
  2. bioRxiv. 2023 Jan 21. pii: 2023.01.20.524964. [Epub ahead of print]
      The normally nuclear HNRNPH2 is mutated in HNRNPH2 -related X-linked neurodevelopmental disorder causing the protein to accumulate in the cytoplasm. Interactions of HNRNPH2 with its importin Karyopherin-β2 (Transportin-1) had not been studied. We present a structure that shows Karyopherin-β2 binding HNRNPH2 residues 204-215, a proline-tyrosine nuclear localization signal or PY-NLS that contains a typical R-X 2-4 -P-Y motif, 206 RPGPY 210 , followed a new Karyopherin-β2 binding epitope at 211 DRP 213 that make many interactions with Karyopherin-β2 W373. Mutations at each of these sites decrease Karyopherin-β2 binding affinities by 70-100 fold, explaining aberrant accumulation in cells and emphasizing the role of nuclear import defects in the disease. Sequence/structure analysis suggests that the new epitope C-terminal of the PY-motif, which binds Karyopherin-β2 W373, is rare and thus far limited to close paralogs HNRNPH2, HNRNPH1 and HNRNPF. Karyopherin-β2 W373, a HNRNPH2-binding hotspot, corresponds to W370 of close paralog Transportin-2, a site of pathological variants in patients with neurodevelopmental abnormalities, suggesting that Transportin-2-HNRNPH2/H1/F interactions may be compromised in the abnormalities.Summary: HNRNPH2 variants in HNRNPH2 -related X-linked neurodevelopmental disorder aberrantly accumulate in the cytoplasm. A structure of Karyopherin-β2•HNRNPH2 explains nuclear import defects of the variants, reveals a new NLS epitope that suggests mechanistic changes in pathological variants of Karyopherin-β2 paralog Transportin-2.
    DOI:  https://doi.org/10.1101/2023.01.20.524964
  3. Front Mol Biosci. 2023 ;10 1111574
      The small GTPase Ran is the main regulator of the nucleo-cytoplasmic import and export through the nuclear pore complex. It functions as a molecular switch cycling between the GDP-bound inactive and GTP-bound active state. It consists of a globular (G) domain and a C-terminal region, which is bound to the G-domain in the inactive, GDP-bound states. Crystal structures of the GTP-bound active form complexed with Ran binding proteins (RanBP) show that the C-terminus undergoes a large conformational change, embracing Ran binding domains (RanBD). Whereas in the crystal structures of macromolecular complexes not containing RanBDs the structure of the C-terminal segment remains unresolved, indicating its large conformational flexibility. This movement could not have been followed either by experimental or simulation methods. Here, starting from the crystal structure of Ran in both GDP- and GTP-bound forms we show how rigid the C-terminal region in the inactive structure is during molecular dynamics (MD) simulations. Furthermore, we show how MD simulations of the active form are incapable of mapping the open conformations of the C-terminus. By using the MDeNM (Molecular Dynamics with excited Normal Modes) method, we were able to widely map the conformational surface of the C-terminus of Ran in the active GTP-bound form, which allows us to envisage how it can embrace RanBDs.
    Keywords:  C-terminus; Ran; aMDeNM; conformational search; conformational switch; molecular dynamics; normal modes; small GTPase
    DOI:  https://doi.org/10.3389/fmolb.2023.1111574
  4. J Cell Mol Med. 2023 Feb 01.
      XPO1 (Exportin-1) is the nuclear export protein responsible for the normal shuttling of several proteins and RNA species between the nucleocytoplasmic compartment of eukaryotic cells. XPO1 recognizes the nuclear export signal (NES) of its cargo proteins to facilitate its export. Alterations of nuclear export have been shown to play a role in oncogenesis in several types of solid tumour and haematologic cancers. Over more than a decade, there has been substantial progress in targeting nuclear export in cancer using selective XPO1 inhibitors. This has resulted in recent approval for the first-in-class drug selinexor for use in relapsed, refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL). Despite these successes, not all patients respond effectively to XPO1 inhibition and there has been lack of biomarkers for response to XPO1 inhibitors in the clinic. Using haematologic malignancy cell lines and samples from patients with myelodysplastic neoplasms treated with selinexor, we have identified XPO1, NF-κB(p65), MCL-1 and p53 protein levels as protein markers of response to XPO1 inhibitor therapy. These markers could lead to the identification of response upon XPO1 inhibition for more accurate decision-making in the personalized treatment of cancer patients undergoing treatment with selinexor.
    Keywords:  XPO1 inhibition; XPO1 mutation; exportin-1; haematologic malignancies; nuclear export; protein biomarker; protein cargoes
    DOI:  https://doi.org/10.1111/jcmm.17667