bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2023–01–08
six papers selected by
Sara Mingu, Johannes Gutenberg University



  1. Nature. 2023 Jan 04.
      Understanding how the nuclear pore complex (NPC) is assembled is of fundamental importance to grasp the mechanisms behind its essential function and understand its role during the evolution of eukaryotes1-4. There are at least two NPC assembly pathways-one during the exit from mitosis and one during nuclear growth in interphase-but we currently lack a quantitative map of these events. Here we use fluorescence correlation spectroscopy calibrated live imaging of endogenously fluorescently tagged nucleoporins to map the changes in the composition and stoichiometry of seven major modules of the human NPC during its assembly in single dividing cells. This systematic quantitative map reveals that the two assembly pathways have distinct molecular mechanisms, in which the order of addition of two large structural components, the central ring complex and nuclear filaments are inverted. The dynamic stoichiometry data was integrated to create a spatiotemporal model of the NPC assembly pathway and predict the structures of postmitotic NPC assembly intermediates.
    DOI:  https://doi.org/10.1038/s41586-022-05528-w
  2. Plant Cell Rep. 2023 Jan 04.
       KEY MESSAGE: Arabidopsis nucleoporin involved in the regulation of ethylene signaling via controlling of nucleocytoplasmic transport of mRNAs. The two-way transport of mRNAs between the nucleus and cytoplasm are controlled by the nuclear pore complex (NPC). In higher plants, the NPC contains at least 30 nucleoporins. The Arabidopsis nucleoporins are involved in various biological processes such as pathogen interaction, nodulation, cold response, flowering, and hormone signaling. However, little is known about the regulatory functions of the nucleoporin NUP160 and NUP96 in ethylene signaling pathway. In the present study, we provided data showing that the Arabidopsis nucleoporin NUP160 and NUP96 participate in ethylene signaling-related mRNAs nucleocytoplasmic transport. The Arabidopsis nucleoporin mutants (nup160, nup96-1, nup96-2) exhibited enhanced ethylene sensitivity. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that the nucleoporin mutants affected the nucleocytoplasmic transport of all the examined mRNAs, including the ethylene signaling-related mRNAs such as ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, and EIN3. Transcriptome analysis of the nucleoporin mutants provided clues suggesting that the nucleoporin NUP160 and NUP96 may participate in ethylene signaling via various molecular mechanisms. These observations significantly advance our understanding of the regulatory mechanisms of nucleoporin proteins in ethylene signaling and ethylene response.
    Keywords:  Arabidopsis; Ethylene; Nucleocytoplasmic transport; Nucleoporin; mRNA
    DOI:  https://doi.org/10.1007/s00299-022-02976-6
  3. Brain Commun. 2023 ;5(1): fcac334
      Nucleoporin 98 is a nuclear pore complex component that is mislocalized in Alzheimer's disease and the alteration in nucleoporin 98 has been attributed to tau. In order to determine if nucleoporin 98 mislocalization is a general feature of tauopathies, we assessed the localization of nucleoporin 98 in neurons in primary tauopathies, including frontotemporal lobar degeneration-tau, corticobasal degeneration and progressive supranuclear palsy. Immunofluorescence staining was performed on frontal cortex and occipital cortex tissue from cases of primary tauopathies and controls without neurodegenerative disease using antibodies to identify nucleoporin 98, phospho-tau (Ser202, Thr205) monoclonal antibody and neuronal marker microtubule-associated protein 2. The stained tissue was imaged by fluorescence microscopy and the number of neurons with mislocalized nucleoporin 98 and phospho-tau (Ser202, Thr205) monoclonal antibody staining was quantified. In frontal cortex tissue, all primary tauopathies examined demonstrated significantly increased numbers of neurons with abnormal localization of nucleoporin 98 along the nuclear envelope compared with control tissue. Additionally, frontotemporal lobar degeneration-tau and corticobasal degeneration in the frontal cortex demonstrated significantly increased numbers of neurons with a cytoplasmic mislocalization of nucleoporin 98 compared with control tissue. The number of neurons with mislocalized nucleoporin 98 was significantly correlated with the number of neurons with phospho-tau (Ser202, Thr205) monoclonal antibody-positive tau staining. In the occipital cortex, which is relatively spared from pathological tau accumulations in these primary tauopathies, the localization of nucleoporin 98 was not significantly altered. This study demonstrates that nucleoporin 98 mislocalization is a feature of primary tauopathies and is associated with pathological tau accumulation. In the context of prior research demonstrating nucleoporin 98 mislocalization in Alzheimer's disease and an interaction between tau and nucleoporin 98, these results further support the hypothesis that pathological tau may contribute to nucleoporin 98 mislocalization. Given the critical role of the nuclear pore complex in nucleocytoplasmic transport, the identification of nucleoporin 98 mislocalization in primary tauopathies highlights a potential pathophysiological disruption in these disorders.
    Keywords:  NUP98; mislocalization; nucleoporin; tau; tauopathy
    DOI:  https://doi.org/10.1093/braincomms/fcac334
  4. Subcell Biochem. 2023 ;102 53-75
      Development from embryo to adult, organismal homeostasis and ageing are consecutive processes that rely on several functions of the nuclear envelope (NE). The NE compartmentalises the eukaryotic cells and provides physical stability to the genetic material in the nucleus. It provides spatiotemporal regulation of gene expression by controlling nuclear import and hence access of transcription factors to target genes as well as organisation of the genome into open and closed compartments. In addition, positioning of chromatin relative to the NE is important for DNA replication and repair and thereby also for genome stability. We discuss here the relevance of the NE in two classes of age-related human diseases. Firstly, we focus on the progeria syndromes Hutchinson-Gilford (HGPS) and Nestor-Guillermo (NGPS), which are caused by mutations in the LMNA and BANF1 genes, respectively. Both genes encode ubiquitously expressed components of the nuclear lamina that underlines the nuclear membranes. HGPS and NGPS patients manifest symptoms of accelerated ageing and cells from affected individuals show similar defects as cells from healthy old donors, including signs of increased DNA damage and epigenetic alternations. Secondly, we describe how several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis and Huntington's disease, are related with defects in nucleocytoplasmic transport. A common feature of this class of diseases is the accumulation of nuclear pore proteins and other transport factors in inclusions. Importantly, genetic manipulations of the nucleocytoplasmic transport machinery can alleviate disease-related phenotypes in cell and animal models, paving the way for potential therapeutic interventions.
    Keywords:  HGPS; Laminopathy; NGPS; NPC; Neurodegeneration; Nuclear lamina; Nuclear pore complex; Nucleocytoplasmic transport; Progeria
    DOI:  https://doi.org/10.1007/978-3-031-21410-3_3
  5. Front Cell Dev Biol. 2022 ;10 1069765
      SETDB1 is a histone H3-lysine 9-specific methyltransferase that fulfills epigenetic functions inside the nucleus; however, when overexpressed, SETDB1 majorily localizes in the cytoplasm. SETDB1 has a single nuclear-localization-signal (NLS) motif and two successive nuclear-export-signal (NES1 and NES2) motifs in the N-terminus, suggesting that SETDB1 localization is the consequence of a balance between the two antithetic motifs. Here, we performed a series of motif deletions to characterize their effects on the cellular movement of SETDB1. Given the cytoplasmic localization of GFP-SETDB1 in the whole form, without the NES motifs, GFP-SETDB1 was not nuclear, and 3xNLS addition plus NES removal held the majority of GFP-SETDB1 within the nucleus. The results indicated that the cytoplasmic localization of GFP-SETDB1 is the combined result of weak NLS and robust NESs. In ATF7IP-overexpressing cells, GFP-SETDB1 entered the nucleus only in the presence of the NES1 motif; neither the NES2 nor NLS motif was necessary. Since subcellular fractionation results showed that ATF7IP was nuclear-only, an intermediary protein may interact specifically with the NES1 motif after stimulation by ATF7IP. When GFP-SETDB1 had either NES1 or NES2, it was precipitated (in immunoprecipitation) and colocalized (in immunofluorescence) with ATF7IP, indicating that GFP-SETDB1 interacts with ATF7IP through the NES motifs in the nucleus. The regulated nuclear entry of SETDB1 is assumed to set a tight restriction on its abundance within the nucleus, thereby ensuring balanced nuclear SETDB1 levels.
    Keywords:  ATF7IP; NES; NLS; PML; nuclear export; nuclear import
    DOI:  https://doi.org/10.3389/fcell.2022.1069765
  6. Oxid Med Cell Longev. 2022 ;2022 1361135
      Dysregulation of eukaryotic translation initiation factor 1A, X-linked (EIF1AX), has been implicated in the pathogenesis of some cancers. However, the role of EIF1AX in endometrial carcinoma (EC) remains unknown. We investigated the EIF1AX expression in EC patients and assessed its tumorigenesis-associated function and nucleocytoplasmic transport mechanism in vitro and in vivo. The results indicated that the cytoplasmic EIF1AX expression showed a gradual increase when going from endometrium normal tissue, simple endometrial hyperplasia, complex endometrial hyperplasia, and endometrial atypical hyperplasia to EC, while vice versa for the nuclear EIF1AX expression. In addition, the cytoplasmic EIF1AX expression was positively correlated with histologic type, high International Federation of Gynecology and Obstetrics (FIGO) grade, advanced FIGO stage, deeper infiltration, high Ki67 index, and shorter recurrence-free survival in EC patients. In vitro, short hairpin RNA-mediated EIF1AX depletion or SV40NLS-mediated EIF1AX import into the nucleus in multiple human EC cells potently suppressed cell migration and invasion, epithelial-mesenchymal transition, and lung metastasis. Moreover, exportin 1 induced the transport of EIF1AX from the nucleus to the cytoplasm that could be inhibited by leptomycin B treatment or the mutation in the EIF1AX location sequence. These results demonstrate that cytoplasmic EIF1AX may play a key role in the incidence and promotion of EC, and thus, targeting EIF1AX or its nucleocytoplasmic transport process may offer an effective new therapeutic approach to EC.
    DOI:  https://doi.org/10.1155/2022/1361135