bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2022–08–21
five papers selected by
Sara Mingu, Johannes Gutenberg University



  1. Mol Microbiol. 2022 Aug 16.
      Parvoviruses are small non-enveloped single-stranded DNA viruses, which depend on host cell nuclear transcriptional and replication machinery. After endosomal exposure of nuclear localization sequence and a phospholipase A2 domain on the capsid surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to the small capsid diameter of 18-26 nm, intact capsids can potentially pass into the nucleus through nuclear pore complexes (NPCs). This might be facilitated by active nuclear import, but capsids may also follow an alternative entry pathway that includes activation of mitotic factors and local transient disruption of the nuclear envelope. The nuclear entry is followed by currently undefined events of viral genome uncoating. After genome release, viral replication compartments are initiated and infection proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear capsid assembly during virus-induced S/G2 cell cycle arrest. Nuclear egress of capsids occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alternative pathway for nuclear export has been described using active transport through the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which is enhanced by phosphorylation of the N-terminal domain of VP2. However, other alternative but not yet uncharacterized nuclear export pathways cannot be excluded.
    Keywords:  Parvoviruses; import and export; nuclear envelope; nuclear pore complexes; nucleus
    DOI:  https://doi.org/10.1111/mmi.14974
  2. J Integr Plant Biol. 2022 Aug 19.
      Abscisic acid (ABA) is a key regulator of plant responses to abiotic stresses, such as drought. ABA receptors and coreceptors perceive ABA to activate Snf1-related protein kinase2s (SnRK2s) that phosphorylate downstream effectors, thereby activating ABA signaling and the stress response. As stress responses come with fitness penalties for plants, it is crucial to tightly control SnRK2 kinase activity to restrict ABA signaling. However, how SnRK2 kinases are inactivated remains elusive. Here, we show that NUCLEAR PORE ANCHOR (NUA), a nuclear pore complex (NPC) component, negatively regulates ABA-mediated inhibition of seed germination and post-germination growth, and drought tolerance in Arabidopsis thaliana. The role of NUA in response to ABA depends on SnRK2.2 and SnRK2.3 for seed germination and on SnRK2.6 for drought. NUA does not directly inhibit the phosphorylation of these SnRK2s or affects their abundance. However, the NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, negatively regulates ABA signaling by directly interacting with and inhibiting SnRK2 phosphorylation and protein levels. More importantly, we demonstrated that SnRK2.6 can be SUMOylated in vitro, and ESD4 inhibits its SUMOylation. Taken together, we identified NUA and ESD4 as SnRK2 kinase inhibitors that block SnRK2 activity, and reveal a mechanism whereby NUA and ESD4 negatively regulate plant responses to ABA and drought stress possibly through SUMOylation-dependent regulation of SnRK2s. This article is protected by copyright. All rights reserved.
    Keywords:  ABA; ESD4; NUA; SnRK2; drought tolerance
    DOI:  https://doi.org/10.1111/jipb.13349
  3. mBio. 2022 Aug 16. e0195922
      The cone-shaped mature HIV-1 capsid is the main orchestrator of early viral replication. After cytosolic entry, it transports the viral replication complex along microtubules toward the nucleus. While it was initially believed that the reverse transcribed genome is released from the capsid in the cytosol, recent observations indicate that a high amount of capsid protein (CA) remains associated with subviral complexes during import through the nuclear pore complex (NPC). Observation of postentry events via microscopic detection of HIV-1 CA is challenging, since epitope shielding limits immunodetection and the genetic fragility of CA hampers direct labeling approaches. Here, we present a minimally invasive strategy based on genetic code expansion and click chemistry that allows for site-directed fluorescent labeling of HIV-1 CA, while retaining virus morphology and infectivity. Thereby, we could directly visualize virions and subviral complexes using advanced microscopy, including nanoscopy and correlative imaging. Quantification of signal intensities of subviral complexes revealed an amount of CA associated with nuclear complexes in HeLa-derived cells and primary T cells consistent with a complete capsid and showed that treatment with the small molecule inhibitor PF74 did not result in capsid dissociation from nuclear complexes. Cone-shaped objects detected in the nucleus by electron tomography were clearly identified as capsid-derived structures by correlative microscopy. High-resolution imaging revealed dose-dependent clustering of nuclear capsids, suggesting that incoming particles may follow common entry routes. IMPORTANCE The cone-shaped capsid of HIV-1 has recently been recognized as a master organizer of events from cell entry of the virus to the integration of the viral genome into the host cell DNA. Fluorescent labeling of the capsid is essential to study its role in these dynamic events by microscopy, but viral capsid proteins are extremely challenging targets for the introduction of labels. Here we describe a minimally invasive strategy that allows us to visualize the HIV-1 capsid protein in infected cells by live-cell imaging and superresolution microscopy. Applying this strategy, we confirmed that, contrary to earlier assumptions, an equivalent of a complete capsid can enter the host cell nucleus through nuclear pores. We also observed that entering capsids cluster in the nucleus in a dose-dependent manner, suggesting that they may have followed a common entry route to a site suitable for viral genome release.
    Keywords:  HIV-1; STED; amber suppression; capsid; click labeling; correlative microscopy; electron microscopy; genetic code expansion; human immunodeficiency virus; primary CD4+ T cells; superresolution microscopy
    DOI:  https://doi.org/10.1128/mbio.01959-22
  4. Nat Commun. 2022 Aug 15. 13(1): 4782
      The emergence of heavily mutated SARS-CoV-2 variants of concern (VOCs) place the international community on high alert. In addition to numerous mutations that map in the spike protein of VOCs, expression of the viral accessory proteins ORF6 and ORF9b also elevate; both are potent interferon antagonists. Here, we present the crystal structures of Rae1-Nup98 in complex with the C-terminal tails (CTT) of SARS-CoV-2 and SARS-CoV ORF6 to 2.85 Å and 2.39 Å resolution, respectively. An invariant methionine (M) 58 residue of ORF6 CTT extends its side chain into a hydrophobic cavity in the Rae1 mRNA binding groove, resembling a bolt-fitting-hole; acidic residues flanking M58 form salt-bridges with Rae1. Our mutagenesis studies identify key residues of ORF6 important for its interaction with Rae1-Nup98 in vitro and in cells, of which M58 is irreplaceable. Furthermore, we show that ORF6-mediated blockade of mRNA and STAT1 nucleocytoplasmic transport correlate with the binding affinity between ORF6 and Rae1-Nup98. Finally, binding of ORF6 to Rae1-Nup98 is linked to ORF6-induced interferon antagonism. Taken together, this study reveals the molecular basis for the antagonistic function of Sarbecovirus ORF6, and implies a strategy of using ORF6 CTT-derived peptides for immunosuppressive drug development.
    DOI:  https://doi.org/10.1038/s41467-022-32489-5
  5. Wiley Interdiscip Rev RNA. 2022 Aug 17. e1755
      With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
    Keywords:  RNA export; TREX-TAP pathway; cytoplasmic accumulation region; m6A modification; nuclear retention; nuclear retention element
    DOI:  https://doi.org/10.1002/wrna.1755