bims-nucpor Biomed News
on Nuclear pore complex and nucleoporins in stress, aging and disease
Issue of 2021–10–17
six papers selected by
Sara Mingu, Johannes Gutenberg University



  1. Nature. 2021 Oct 13.
      Nuclear pore complexes (NPCs) create large conduits for cargo transport between the nucleus and cytoplasm across the nuclear envelope (NE)1-3. These multi-megadalton structures are composed of about thirty different nucleoporins that are distributed in three main substructures (the inner, cytoplasmic and nucleoplasmic rings) around the central transport channel4-6. Here we use cryo-electron tomography on DLD-1 cells that were prepared using cryo-focused-ion-beam milling to generate a structural model for the human NPC in its native environment. We show that-compared with previous human NPC models obtained from purified NEs-the inner ring in our model is substantially wider; the volume of the central channel is increased by 75% and the nucleoplasmic and cytoplasmic rings are reorganized. Moreover, the NPC membrane exhibits asymmetry around the inner-ring complex. Using targeted degradation of Nup96, a scaffold nucleoporin of the cytoplasmic and nucleoplasmic rings, we observe the interdependence of each ring in modulating the central channel and maintaining membrane asymmetry. Our findings highlight the inherent flexibility of the NPC and suggest that the cellular environment has a considerable influence on NPC dimensions and architecture.
    DOI:  https://doi.org/10.1038/s41586-021-03985-3
  2. Int J Mol Sci. 2021 Oct 08. pii: 10898. [Epub ahead of print]22(19):
      Specific macromolecules are rapidly transported across the nuclear envelope via the nuclear pore complex (NPC). The selective transport process is facilitated when nuclear transport receptors (NTRs) weakly and transiently bind to intrinsically disordered constituents of the NPC, FG Nups. These two types of proteins help maintain the selective NPC barrier. To interrogate their binding interactions in vitro, we deployed an NPC barrier mimic. We created the stationary phase by covalently attaching fragments of a yeast FG Nup called Nsp1 to glass coverslips. We used a tunable mobile phase containing NTR, nuclear transport factor 2 (NTF2). In the stationary phase, three main factors affected binding: the number of FG repeats, the charge of fragments, and the fragment density. We also identified three main factors affecting binding in the mobile phase: the avidity of the NTF2 variant for Nsp1, the presence of nonspecific proteins, and the presence of additional NTRs. We used both experimentally determined binding parameters and molecular dynamics simulations of Nsp1FG fragments to create an agent-based model. The results suggest that NTF2 binding is negatively cooperative and dependent on the density of Nsp1FG molecules. Our results demonstrate the strengths of combining experimental and physical modeling approaches to study NPC-mediated transport.
    Keywords:  FG Nups; NPC barrier mimic; agent-based modeling; molecular dynamics; nuclear pore complex; nuclear transport receptors; single molecule localization microscopy (SMLM)
    DOI:  https://doi.org/10.3390/ijms221910898
  3. J Virol. 2021 Oct 13. JVI0148121
      Porcine parvovirus (PPV) NS1, the major nonstructural protein of this virus, plays an important role in PPV replication. We show, for the first time, that NS1 dynamically shuttles between the nucleus and cytoplasm, although its subcellular localization is predominantly nuclear. NS1 contains two nuclear export signals (NESs) at amino acids 283-291 (designated NES2) and 602-608 (designated NES1). NES1 and NES2 are both functional and transferable NESs, and their nuclear export activity is blocked by leptomycin B (LMB), suggesting that the export of NS1 from the nucleus is dependent upon the chromosome region maintenance 1 (CRM1) pathway. Deletion and site-directed mutational analyses showed that NS1 contains a bipartite nuclear localization signal (NLS) at amino acids 256-274. Coimmunoprecipitation assays showed that NS1 interacts with importins α5 and α7 through its NLS. The overexpression of CRM1, importins α5 and α7 significantly promoted PPV replication, whereas the inhibition of CRM1 and importin α/β-mediated transport by specific inhibitors (LMB, importazole and ivermectin) clearly blocked PPV replication. The mutant viruses of delete NESs or NLS motif of the NS1 by using reverse genetics could not be rescued, suggesting that NESs and NLS are essential for PPV replication. Collectively, these findings suggest that NS1 shuttles between the nucleus and cytoplasm, mediated by its functional NESs and NLS, via the CRM1-dependent nuclear export pathway and the importin α/β-mediated nuclear import pathway, and PPV proliferation was inhibited if blocking NS1 nuclear import or export. Importance PPV replicates in the nucleus, and the nuclear envelope is a barrier to its entry into and egress from the nucleus. PPV NS1 is a nucleus-targeting protein that is important for viral DNA replication. Because the NS1 molecule is large (> 50 kDa), it cannot pass through the nuclear pore complex by diffusion alone, and requires specific transport receptors to permit its nucleocytoplasmic shuttling. In this study, the two functional NESs in the NS1 protein were identified, and its dependence on the CRM1 pathway for nuclear export demonstrated. The nuclear import of NS1 utilizes importins α5 and α7 in the importin α/β nuclear import pathway.
    DOI:  https://doi.org/10.1128/JVI.01481-21
  4. Autophagy. 2021 Oct 13. 1-6
      Nucleophagy, the selective subtype of autophagy that predominantly targets only a selected and (nonessential) portion of the nucleus, and rarely the nucleus in its entirety, for degradation, reinforces the paradigm that nucleophagy recycling is a meticulous and highly delicate process guarded by fail-safe mechanisms. Our goal in this commentary is to encourage autophagy researchers and other scientists to explore nucleophagy blind spots and gain advanced insights into the diverse roles of this process and its selective modality as they pertain to intranuclear quality control and cellular homeostasis. Identifying and deciphering nucleophagic signaling, regulation, molecular mechanism(s) and its mediators, cargo composition and nuclear membrane dynamics under numerous physiological and/or pathological settings will provide important advances in our understanding of this critical type of organelle-selective autophagy.Abbreviations: INM, inner nuclear membrane; LN, late nucleophagy; mRNA, messenger RNA; NE, nuclear envelope; NL, nuclear lamina; NPC(s), nuclear pore complex(es); NVJ(s), nucleus-vacuole junction(s); ONM, outer nuclear membrane; PMN, piecemeal microautophagy of the nucleus; PND, programmed nuclear death; PNuD, programmed nuclear destruction; rDNA/rRNA, ribosomal DNA/RNA.
    Keywords:  Cargo; degradation; homeostasis; macronucleophagy; membrane; micronucleophagy; mode; nucleophagy; nucleus; vacuole
    DOI:  https://doi.org/10.1080/15548627.2021.1971380
  5. Front Cell Dev Biol. 2021 ;9 732786
      Background: Importin 7 (IPO7), a karyopherin-β protein, is involved in various tumorigenesis and progression abilities by mediating the nuclear import of oncoproteins. However, the exact biological functions of IPO7 remain to be further elucidated. Materials and Methods: TCGA and GEO datasets were used to identify dysregulated expression of IPO7 in various cancers. Gain-of-function and loss-of-function analyses were used to identify the oncogenic functions of IPO7 in vitro and in vivo. Moreover, LC-MS/MS and parallel reaction monitoring analysis were used to comparatively profiled IPO7-related proteomics and potential molecular machinery. Results: Our works demonstrated that the expression of IPO7 was upregulated and was correlated with a poor prognosis in cervical cancer. In vitro and in vivo experiments demonstrated that knockdown of IPO7 inhibited the proliferation of HeLa and C-4 I cells. LC-MS/MS analysis showed that IPO7-related cargo proteins mainly were enriched in gene transcription regulation. Then independent PRM analysis for the first time demonstrated that 32 novel IPO7 cargo proteins, such as GTF2I, RORC1, PSPC1, and RBM25. Moreover, IPO7 contributed to activating the PI3K/AKT-mTOR pathway by mediating the nuclear import of GTF2I in cervical cancer cells. Intriguingly, we found that the IPO7 expression was negatively correlated with CD8 T cell infiltration via regulating the expression of CD276 in cervical cancer. Conclusion: This study enhances our understanding of IPO7 nuclear-cytoplasmic translocation and might reveal novel potential therapeutic targets. The results of a negative correlation between the IPO7 and CD8 T cell infiltration indicate that the IPO7 might play an important impact on the immune microenvironment of cervical cancer.
    Keywords:  IPO7; cervical cancer; immune infiltration; mass spectrometry; proteome
    DOI:  https://doi.org/10.3389/fcell.2021.732786
  6. Pharmgenomics Pers Med. 2021 ;14 1291-1302
       Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have represented the prototype of targeted therapy in NSCLC. Patients with EGFR-mutant lung adenocarcinoma extract an extraordinary clinical benefit from EGFR-TKIs. However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual's response to TKIs. We investigated whether genetic variants in miRNA binding sites are associated with the clinical outcome of EGFR-TKIs in lung adenocarcinoma patients.
    Methods: One hundred SNPs at miRNA binding sites in cancer-related genes were selected for the analysis using the crosslinking, ligation and sequencing of hybrids (CLASH) and CancerGenes database. qRT-PCR and luciferase assays were conducted to evaluate the functional relevance of the SNPs.
    Results: NUP62 rs9523A>G were significantly associated with worse response to EGFR-TKIs, overall survival (OS), and progression-free survival (PFS). The other three SNPs (DVL2 rs2074216G>A, ARF1 rs11541557G>T, and UHRF1 rs2261988C>A) were significantly associated with worse OS and PFS. The rs9523A>G was significantly associated with decreased NUP62 expression in tumor tissues. In addition, a significantly decreased luciferase activity was noted in NUP62 rs9523 G allele compared to A allele.
    Conclusion: Genetic variants in miRNA binding sites, especially NUP62 rs9523A>G, may be useful in predicting the clinical outcomes of EGFR-mutant lung adenocarcinoma patients treated with EGFR-TKIs.
    Keywords:  EGFR-TKI; clinical outcome; lung adenocarcinoma; miRNA binding site; polymorphism
    DOI:  https://doi.org/10.2147/PGPM.S329055