bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2022‒01‒30
five papers selected by
Laia Caja Puigsubira
Uppsala University


  1. Reprod Sci. 2022 Jan 24.
      Decidualization of the endometrial stromal cells (ESCs) is essential for successful embryo implantation. It involves the transformation of fibroblastic cells into epithelial-like cells that secrete cytokines, growth factors, and proteins necessary for implantation. Previous studies have revealed altered expression of miR-375 in the endometrium of patients with recurrent implantation failure and the ectopic stromal cells of patients with endometriosis. However, the exact molecular mechanisms, particularly the role of microRNAs (miRNAs) in the regulation of decidualization, remain elusive. In this study, we investigated whether decidualization is affected by miR-375 and its potential target(s). The findings demonstrated the downregulation of the expression of miR-375 in the secretory phase compared to its expression in the proliferative phase of the endometrium in normal donors. In contrast, it was upregulated in the secretory phase of the endometrium in infertility patients. Furthermore, during decidualization of ESCs in vitro, overexpression of miR-375 significantly reduced the transcript-level expression of forkhead box protein O1 (FOXO1), prolactin (PRL), and insulin-like growth factor binding protein-1 (IGFBP1), the well-known decidual cell markers. Overexpression of miR-375 also resulted in reduced decidualization-derived intracellular and mitochondrial reactive oxygen species (ROS) levels. Using the luciferase assay, we confirmed that NADPH oxidase 4 (NOX4) is a direct target of miR-375. Collectively, the study showed that the miR-375-mediated NOX4 downregulation reduced ROS production and attenuated the decidualization of ESCs. It provides evidence that miR-375 is a negative regulator of decidualization and could serve as a potential target for combating infertility.
    Keywords:  Decidualization; Endometrial stromal cells; NOX4; Reactive oxygen species; miR-375
    DOI:  https://doi.org/10.1007/s43032-022-00854-w
  2. Pharmacol Res. 2022 Jan 24. pii: S1043-6618(22)00042-1. [Epub ahead of print] 106097
      Tumor microenvironment plays an important role in melanoma progression. Recent studies reported endothelial cells (EC) are involved in endothelial-to-mesenchymal transition (EndMT). During this phenotypic switch, EC progressively lose their endothelial markers and acquire mesenchymal properties. Depending on their concentration, reactive oxygen species (ROS) can control tumor growth. In EC, ROS are mainly produced by NAPDH oxidases (NOX) such as NOX1 and NOX2. The aim of the present study was to determine the role of these enzymes in EndMT induced by conditioned media (CM) from SK-MEL 28 melanoma cells. The capacity of CM to induce EndMT in HUVEC after 24h, 48h or 72h has been evaluated by following endothelial HUVECs proliferation, migration and their capacity to form capillary on Matrigel®. Furthermore, EndMT was confirmed by western blot and flow cytometry. To determine the role of NOX in EndMT, specific NOX1 and/or NOX2 inhibitors has been tested. TGF-β2 +/- IL-1β was used as positive control. ROS production was determined through DCFDA assay. An altered endothelial phenotype was found in CM-treated HUVECs. This phenotypic modification was correlated with a decrease in both capillary formation on Matrigel® and cell proliferation and an increase in cell migration. Exposure to CM for 48h significantly enhanced intracellular HUVECs ROS production and this increase was prevented by the dual pharmacological inhibition of NOX1 and NOX2. Furthermore, inhibition of NOX1/2 also leads to a partial reversion of CM-induced EndMT. These data confirmed the role of NOX1 and NOX2 in EndMT induced by melanoma cancer cell secretome.
    Keywords:  Endothelial cell; NADPH oxidases; ROS; endothelial-to-mesenchymal transition; melanoma
    DOI:  https://doi.org/10.1016/j.phrs.2022.106097
  3. Biochem Biophys Rep. 2022 Mar;29 101198
      Superoxide generated by NADPH Oxidase 5 (Nox5) is regulated by Ca2+ through the interaction of its self-contained Ca2+ binding domain and dehydrogenase domain (DH). Recently, calmodulin (CaM) has been reported to enhance the Ca2+ sensitivity of Nox5 by binding to the CaM-binding domain sequence (CMBD), in which the interaction between CaM and Nox5 is largely unclear. Here, we used the CMBD peptide and truncated DH constructs, and separately studied their interaction with CaM by fluorescence, calorimetry, and dynamic light scattering. Our results revealed that each half-domain of CaM binds one CMBD peptide with a binding constant near 106 M-1 and a binding enthalpy change of -3.81 kcal/mol, consistent with an extended 1:2 CaM:CMBD structure. However, the recombinant truncated DH proteins exist as oligomers, possibly trimer and tetramer. The oligomeric states are concentration and salt dependent. CaM binding appears to stabilize the DH dimer complexed with CaM. The thermodynamics of CaM binding to the DH is comparable to the peptide-based study except that the near unity binding stoichiometry and a large conformational change were observed. Our result suggests that the oligomeric states of Nox5, mediated by its DH domain and CaM, may be important for its superoxide-generating activity.
    Keywords:  Calcium binding; Calorimetry; Gel filtration; NADPH Oxidase 5; Spectroscopy
    DOI:  https://doi.org/10.1016/j.bbrep.2021.101198
  4. Am J Hematol. 2022 Jan 24.
      The molecular complexity displayed in acute myeloid leukemia (AML) hinders patient stratification and treatment decisions. Previous studies support the utility of using specific gene panels for this purpose. Focusing on two salient features of AML, the production of reactive oxygen species (ROS) by NADPH oxidases (NOX) and metabolism, we aimed to identify a gene panel that could improve patient stratification. Pairwise comparison of AML versus healthy gene expression revealed the downregulation of four members of the NOX2 complex including CYBB (coding for NOX2) in AML patients. We analyzed the expression of 941 genes related to metabolism and found 28 genes with expression correlated to CYBB. This panel of 29 genes (29G) effectively divides AML samples according to their prognostic group. The robustness of 29G was confirmed by 6 AML cohort datasets with a total of 1821 patients (overall accuracies of 85%, 78%, 80%, 75%, 59% and 83%). An expression index (EI) was developed according to the expression of the selected discriminatory genes. Overall Survival (OS) was higher for low 29G expression index patients than for high 29G expression index group, which was confirmed in three different datasets with a total of 1069 patients. Moreover, 29G can dissect intermediate-prognosis patients in four clusters with different OS, which could improve the current AML stratification scheme. In summary, we have found a gene signature (29G) that can be used for AML classification and for OS prediction. Our results confirm NOX and metabolism as suitable therapeutic targets in AML. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1002/ajh.26477
  5. Cell Death Discov. 2022 Jan 24. 8(1): 33
      The current study investigated the physiological mechanisms by which extracellular vesicle (EV)-encapsulated miR-181a-2-3p derived from mesenchymal stem cells (MSCs) might mediate oxidative stress (OS) in Parkinson's disease (PD). First, 6-hydroxydopamine (6-OHDA)-induced PD cell and mouse models were established, after which miR-181a-2-3p, EGR1, and NOX4 expression patterns were determined in SH-SY5Y cells and substantia nigra (SN) of PD mice. Next, the binding affinity among miR-181a-2-3p, EGR1, and NOX4 was identified using multiple assays. Gain- or loss-of-function experiments were further adopted to detect SH-SY5Y cell proliferation and apoptosis and to measure the levels of SOD, MDA, and ROS. Finally, the effects of miR-181a-2-3p from MSC-derived EVs in PD mouse models were also explored. It was found that miR-181a-2-3p was poorly expressed in 6-OHDA-induced SH-SY5Y cells, whereas miR-181a-2-3p from MSCs could be transferred into SH-SY5Y cells via EVs. In addition, miR-181a-2-3p could target and inhibit EGR1, which promoted the expression of NOX4. The aforementioned miR-181a-2-3p shuttled by MSC-derived EVs facilitated SH-SY5Y proliferation and SOD levels, but suppressed apoptosis and MDA and ROS levels by regulating EGR1 via inhibition of NOX4/p38 MAPK, so as to repress OS of PD. Furthermore, in PD mice, miR-181a-2-3p was carried by EVs from MSCs to alleviate apoptosis of dopamine neurons and OS, accompanied by increased expressions of α-syn and decreased 4-HNE in SN tissues. Collectively, our findings revealed that MSC-derived EV-loaded miR-181a-2-3p downregulated EGR1 to inhibit OS via the NOX4/p38 MAPK axis in PD.
    DOI:  https://doi.org/10.1038/s41420-022-00823-x