bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2022‒01‒16
nine papers selected by
Laia Caja Puigsubira
Uppsala University


  1. Free Radic Res. 2022 Jan 11. 1-9
      NADPH oxidase (Nox) 4 produces H2O2 by forming a heterodimer with p22phox and is involved in hemangioendothelioma development through monocyte chemoattractant protein-1 (MCP-1) upregulation. Here, we show that Nox4 protein levels were maintained by p22phox in hemangioendothelioma cells and Nox4 protein stability was dependent on p22phox coexpression. Conversely, the degradation of Nox4 monomer was enhanced by p22phox knockdown. Under hypoxic conditions in hemangioendothelioma cells, p22phox was downregulated at the mRNA and protein levels. Downregulation of p22phox protein resulted in the enhanced degradation of Nox4 protein in hypoxia-treated hemangioendothelioma cells. In contrast, Nox2, a Nox isoform, was not altered at the protein level under hypoxic conditions. Nox2 exhibited a higher affinity for p22phox compared with Nox4, suggesting that when coexpressed with Nox4 in the same cells, Nox2 acts as a competitor. Nox2 knockdown restored Nox4 protein levels partially reduced by hypoxic treatment. Thus, Nox4 protein levels were attenuated in hypoxia-treated cells resulting from p22phox depletion. MCP-1 secretion was decreased concurrently with hypoxia-induced Nox4 downregulation compared with that under normoxia.
    Keywords:  NADPH oxidase 4 (Nox4); hemangioendothelioma; hypoxia; monocyte chemoattractant protein-1 (MCP-1); p22phox; reactive oxygen species (ROS)
    DOI:  https://doi.org/10.1080/10715762.2021.2009116
  2. Mol Med Rep. 2022 Mar;pii: 84. [Epub ahead of print]25(3):
      Silent information regulator factor 2‑related enzyme 1 (Sirt1) is involved in the regulation of cell senescence, gene transcription, energy balance and oxidative stress. However, the effect of Sirt1 on atrial natriuretic factor (ANF) secretion, especially under hypoxic conditions is unclear. The present study aimed to investigate the effect of Sirt1, regulated by NADPH oxidase 4 (NOX4), on ANF secretion in isolated beating rat atria during hypoxia. ANF secretion was analyzed using radioimmunoassays and protein expression levels were determined by western blotting and immunofluorescence staining. Intra‑atrial pressure was recorded using a physiograph. Hypoxia significantly upregulated Sirt1 and nuclear factor erythroid‑2‑related factor 2 (Nrf2) protein expression levels, together with significantly increased ANF secretion. Hypoxia‑induced protein expression of Sirt1 was significantly blocked by a NOX4 inhibitor, GLX351322, and Nrf2 protein expression levels were significantly abolished using the Sirt1 inhibitor, EX527. Hypoxia also significantly elevated the protein expression levels of phosphorylated‑Akt and sequestosome 1 and significantly downregulated Kelch‑like ECH‑associated protein 1 protein expression levels. These effects were significantly blocked by EX527, preventing hypoxia‑induced Nrf2 expression. An Nrf2 inhibitor, ML385, significantly abolished the hypoxia‑induced upregulation of activating transcription factor (ATF)3, ATF4, T cell factor (TCF)3 and TCF4/lymphoid enhancer factor 1 (LEF1) protein expression levels, and significantly attenuated hypoxia‑induced ANF secretion. These results indicated that Sirt1 and Nrf2, regulated by NOX4, can potentially stimulate TCF3 and TCF4/LEF1 signaling via ATF3 and ATF4 activation, thereby potentially participating in the regulation of ANF secretion in beating rat atria during hypoxia. In conclusion, intervening with the Sirt1/Nrf2/ATF signaling pathway may be an effective strategy for resisting oxidative stress damage in the heart during hypoxia.
    Keywords:  NADPH oxidase 4; activating transcription factor; atrial natriuretic factor; nuclear factor erythroid‑2‑related factor 2; silent information regulator 1
    DOI:  https://doi.org/10.3892/mmr.2022.12600
  3. Int J Mol Sci. 2021 Dec 23. pii: 153. [Epub ahead of print]23(1):
      Graves' disease (GD) is an autoimmune thyroiditis often associated with Graves' orbitopathy (GO). GD thyroid and GO orbital fat share high oxidative stress (OS) and hypervascularization. We investigated the metabolic pathways leading to OS and angiogenesis, aiming to further decipher the link between local and systemic GD manifestations. Plasma and thyroid samples were obtained from patients operated on for multinodular goiters (controls) or GD. Orbital fats were from GO or control patients. The NADPH-oxidase-4 (NOX4)/HIF-1α/VEGF-A signaling pathway was investigated by Western blotting and immunostaining. miR-199a family expression was evaluated following quantitative real-time PCR and/or in situ hybridization. In GD thyroids and GO orbital fats, NOX4 was upregulated and correlated with HIF-1α stabilization and VEGF-A overexpression. The biotin assay identified NOX4, HIF-1α and VEGF-A as direct targets of miR-199a-5p in cultured thyrocytes. Interestingly, GD thyroids, GD plasmas and GO orbital fats showed a downregulation of miR-199a-3p/-5p. Our results also highlighted an activation of STAT-3 signaling in GD thyroids and GO orbital fats, a transcription factor known to negatively regulate miR-199a expression. We identified NOX4/HIF-1α/VEGF-A as critical actors in GD and GO. STAT-3-dependent regulation of miR-199a is proposed as a common driver leading to these events in GD thyroids and GO orbital fats.
    Keywords:  Graves’ disease; Graves’ orbitopathy; VEGF-A; microRNA-199a; oxidative stress
    DOI:  https://doi.org/10.3390/ijms23010153
  4. J Clin Med. 2021 Dec 27. pii: 135. [Epub ahead of print]11(1):
      Bicalutamide (Bic) is an androgen deprivation therapy (ADT) for treating prostate cancer, while ADT is potentially associated with acute kidney injury. Previously, we recognized Bic induced renal mitochondria dysfunction in vitro and in vivo via the ROS -HIF1α pathway. Whether OXPHOS complex, as well as mitochondrial dynamics, can be influenced by Bic via modulation of peroxisome proliferator-activated receptor coactivator 1α (PGC1α), NADPH oxidase 4 (Nox4), mitofusins 1/2 (MFN 1/2), optic atrophy 1 (OPA1), and sirtuins (SIRTs) has not been documented. Renal mesangial cell line was treated with Bic (30~60 μM) for the indicated time. SIRTs, complex I, mitochondrial dynamics- and oxidative stress-related proteins were analyzed. Bic dose-dependently reduced mitochondrial potential, but dose- and time-dependently suppressed translocase of the outer mitochondrial membrane member 20 (Tomm 20), complex I activity. Nox4 and glutathione lead to decreased NAD+/NADH ratio, with upregulated superoxide dismutase 2. SIRT1 was initially stimulated and then suppressed, while SIRT3 was time- and dose-dependently downregulated. PGC1α, MFN2, and OPA1 were all upregulated, with MFN1 and pro-fission dynamin-related protein I downregulated. Bic exhibits potential to damage mitochondria via destroying complex I, complex I activity, and mitochondrial dynamics. Long-term treatment with Bic should be carefully followed up.
    Keywords:  NADPH oxidase 4 (Nox4); PGC1α; bicalutamide; complex I NDUFB8; glutathione (GSH); mitofusins 1/2 (MFN 1/2); optic atrophy 1 (OPA1); sirtuins (SIRTs)1/3; superoxide dismutase 2 (SOD2)
    DOI:  https://doi.org/10.3390/jcm11010135
  5. J Cell Mol Med. 2022 Jan 13.
      Ferroptosis is a regulated cell death nexus linking metabolism, redox biology and diseases including cancer. The aim of the present study was to identify a ferroptosis-related gene prognostic signature for stomach adenocarcinoma (STAD) by systematic analysis of transcriptional profiles from The Cancer Genome Atlas (TCGA), GEO and a clinical cohort from our centre. We developed a predictive model based on three ferroptosis-related genes (CHAC1, NOX4 and HIF1A), gene expression data and corresponding clinical outcomes were obtained from the TCGA database, and the reliability of this model was verified with GSE15459 and 51 queues in our centre. ROC curve showed better predictive ability using the risk score. Immune cell enrichment analysis demonstrated that the types of immune cells and their expression levels in the high-risk group were significantly different from those in the low-risk group. The experimental results confirmed that NOX4 was upregulated and CHAC1 was downregulated in the STAD tissues compared with the normal stomach mucosal tissues (p < 0.05). In sum, the ferroptosis-related gene signature can accurately predict the outcomes of patients with STAD, providing valuable insights for personalized treatment. As the signature also has relevance to the immune characteristics, it may help improve the efficacy of personalized immunotherapy.
    Keywords:   CHAC1 ; HIF1A ; NOX4 ; ferroptosis; prognostic signature; stomach adenocarcinoma
    DOI:  https://doi.org/10.1111/jcmm.17171
  6. Drug Dev Res. 2022 Jan 11.
      Retinal ischemia-reperfusion injury (RIRI) is an important pathological process of many ocular diseases. Mitoquinone (MitoQ), a mitochondrial targeted antioxidant, is a potential compound for therapeutic development of RIRI. This study observed the effect of MitoQ on RIRI, and further explored its possible molecular mechanism. Temporary increase in intraocular pressure was used to establish rat model of RIRI to observe the effect of MitoQ treatment on retinal function, pathological injury, oxidative stress, inflammation and apoptosis. Immunohistochemistry and Western blot were used to detect expressions of cleaved caspase 3, B cell leukemia/lymphoma 2 associated X (Bax), nicotinamide adenine dinucleotide phosphate oxidase (NOX1), NOX4, cleaved-Notch 1, hairy and enhancer of split 1 (Hes1), and sirtuin 1 (SIRT 1) in retina were detected by immunohistochemistry and Western blot. MitoQ treatment significantly improved retinal function and pathological injury, inhibited the over-production of reactive oxygen species, increased the expression of superoxide dismutase 1 (SOD 1), suppressed the releases of inflammatory cytokines, and inhibited retinal cells apoptosis. MitoQ also down-regulated the expressions of cleaved caspase 3, Bax, NOX 1, NOX 4, cleaved-Notch 1, and Hes 1, increased the expression of SIRT 1 protein and its activity. These effects were significantly reversed by SIRT1 inhibitor EX527. Our data suggests that MitoQ, as a potentially effective drug for improving RIRI, may act through the SIRT1/Notch1/NADPH signal axis.
    Keywords:  Mitoquinone; ROS; SIRT 1; inflammation; mitochondria injury; notch 1; retinal ischemia-reperfusion injury
    DOI:  https://doi.org/10.1002/ddr.21911
  7. Transpl Immunol. 2022 Jan 11. pii: S0966-3274(22)00011-9. [Epub ahead of print] 101537
      OBJECTIVE: To explore the effect of erythropoietin (EPO) on the AMP-activated protein kinase (AMPK)/nicotinamide adenine dinucleotide phosphatase oxidase 4 (NOX4) signaling pathway during renal ischemia reperfusion injury (RIRI) in rats.METHODS: A rat model of RIRI was established by clamping the left renal pedicle and removing the right kidney. The rats in the sham group did not have their left renal pedicle clamped. Rats with a model of RIRI were randomly divided into RIRI alone (control), erythropoietin treatment (EPO/RIRI), and Compound C treatment (CPC/RIRI) groups. Hematoxylin-eosin (H&E) staining was used to examine pathological kidney damage. Serum creatinine and urea nitrogen levels were measured to evaluate renal function. Western blotting was performed to detect the expression levels of phosphorylated p-AMPK and total AMPK protein in the kidneys. RT-PCR was used to evaluate the mRNA levels of Nox4 and p22 in the kidneys. Oxidative stress-related indices (ROS, CAT, GSH, SOD, and MDA) were also measured.
    RESULTS: EPO treatment improved kidney function by preventing kidney damage induced by the RIRI model. Preventing ischemia/reperfusion injury in the RIRI model was correlated with an increased p-AMPK/AMPK ratio and elevated activity of CAT, GSH, and SOD, which ameliorated the expression of NOX4, p22, ROS, and MDA. Moreover, treatment with CPC (an AMPK inhibitor) reduced the effects of EPO in the RIRI model.
    CONCLUSION: EPO treatment protected rats against RIRI in the RIRI model by alleviating oxidative stress by triggering the AMPK/NOX4/ROS pathway.
    Keywords:  AMPK/NOX4/ROS; Erythropoietin; Oxidative stress; Renal ischemia reperfusion injury
    DOI:  https://doi.org/10.1016/j.trim.2022.101537
  8. Acta Pharmacol Sin. 2022 Jan 11.
      The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
    Keywords:  Alzheimer’s disease; Parkinson’s disease; aging; cancer; diabetes; obesity
    DOI:  https://doi.org/10.1038/s41401-021-00838-7
  9. Int J Neuropsychopharmacol. 2022 Jan 07. pii: pyab096. [Epub ahead of print]
      BACKGROUND: It is documented that mesenchymal stem cells (MSCs) secretes extracellular vesicles (EVs) to modulate subarachnoid hemorrhage (SAH) development. miR-140-5p expression has been detected in MSC-derived EVs, while it remains enigmatic about the mechanism of MSC-derived EVs containing miR-140-5p in SAH. We aim to fill this void by establishing SAH mouse models and extracting MSCs and MSC-EVs.METHODS: After ALK5 was silenced in SAH mice, neurological function was evaluated, neuron apoptosis was detected by NeuN/TUNEL staining, and expression of serum inflammatory factors (IL-6, IL-1β, and TNF-α) was determined by ELISA. Effect of ALK5 on NOX2 expression was assessed by western blot analysis. Targeting relationship between miR-140-5p and ALK5 was evaluated by dual luciferase assay. Following extraction of MSCs and MSC-EVs, EVs and miR-140-5p were labeled by PKH67 and Cy3 respectively to identify the transferring of miR-140-5p by MSC-EVs. SAH mice were treated with EVs from miR-140-5p mimic/inhibitor-transfected MSCs to detect effects of MSC-EV-miR-140-5p on brain injury and microglial polarization.
    RESULTS: ALK5 silencing increased neurological score, and reduced neuron apoptosis and neuroinflammation in SAH mice. ALK5 silencing inhibited M1 microglia activation by inactivating NOX2. ALK5 was a target gene of miR-140-5p. MSC-derived EVs contained miR-140-5p and transferred miR-140-5p into microglia. MSC-EV-delivered miR-140-3p reduced ALK5 expression to contribute to repression of brain injury and M1 microglia activation in SAH mice.
    CONCLUSIONS: MSC-derived EVs transferred miR-140-5p into microglia to downregulate ALK5 and NOX2, thus inhibiting M1 microglia activation in SAH mice.
    Keywords:  ALK5; Brain injury; Extracellular vesicles; M1 microglia activation; Mesenchymal stem cells; NOX2; Subarachnoid hemorrhage; microRNA-140-5p
    DOI:  https://doi.org/10.1093/ijnp/pyab096