bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2021‒08‒01
five papers selected by
Laia Caja Puigsubira
Uppsala University


  1. Cell. 2021 Jul 17. pii: S0092-8674(21)00830-8. [Epub ahead of print]
      In neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) generated via the pentose phosphate pathway fuels NADPH oxidase NOX2 to produce reactive oxygen species for killing invading pathogens. However, excessive NOX2 activity can exacerbate inflammation, as in acute respiratory distress syndrome (ARDS). Here, we use two unbiased chemical proteomic strategies to show that small-molecule LDC7559, or a more potent designed analog NA-11, inhibits the NOX2-dependent oxidative burst in neutrophils by activating the glycolytic enzyme phosphofructokinase-1 liver type (PFKL) and dampening flux through the pentose phosphate pathway. Accordingly, neutrophils treated with NA-11 had reduced NOX2-dependent outputs, including neutrophil cell death (NETosis) and tissue damage. A high-resolution structure of PFKL confirmed binding of NA-11 to the AMP/ADP allosteric activation site and explained why NA-11 failed to agonize phosphofructokinase-1 platelet type (PFKP) or muscle type (PFKM). Thus, NA-11 represents a tool for selective activation of PFKL, the main phosphofructokinase-1 isoform expressed in immune cells.
    Keywords:  LDC7559; NA-11; NADPH; NETosis; NOX2; PFKL; ROS; neutrophils
    DOI:  https://doi.org/10.1016/j.cell.2021.07.004
  2. Cardiovasc Res. 2021 Jul 28. pii: cvab171. [Epub ahead of print]
      AIMS: NOX-derived reactive oxygen species (ROS) are mediators of signaling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction.METHODS AND RESULTS: VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signaling molecules, actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were downregulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs NOX5 was upregulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1) and hyperphosphorylation (PKC, ERK1/2, MLC20) of signaling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2.
    CONCLUSIONS: We define NOX5/ROS/c-Src as a novel feedforward signaling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.
    TRANSLATIONAL PERSPECTIVE: Oxidative stress is a major factor contributing to vascular damage in hypertension. We corroborate experimental evidence that NOX-derived ROS generation is increased in human vascular smooth muscle cells (VSMC) and demonstrate that in human hypertension NOX5 upregulation is a major trigger of VSMC dysfunction. We uncover new regulatory molecular mechanisms of NOX5 and define NOX5/ROS/c-Src as a novel signaling pathway in human VSMCs. This system is augmented in hypertension contributing to abnormal VSMC redox signaling, cytoskeletal disorganization and vascular dysfunction. Modulating the NOX5/ROS/c-Src pathway may have therapeutic potential by targeting redox signaling pathways involved in vascular dysfunction associated with hypertension.
    Keywords:  NOX5; hypertension; oxidative stress. vascular smooth muscle cells
    DOI:  https://doi.org/10.1093/cvr/cvab171
  3. Aging (Albany NY). 2021 Jul 29. 13(undefined):
      This study focused on the relationship between extracellular-regulated kinase (ERK) and obesity-induced increases in neuropathic pain. We fed rats a high-fat diet to establish the obesity model, and rats were given surgery to establish the chronic compression of the dorsal root ganglia (CCD) model. U0126 was applied to inhibit ERK, and metformin or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) was applied to cause AMP-activated protein kinase (AMPK) activation. Paw withdrawal mechanical threshold (PWMT) were calculated to indicate the level of neuropathic pain. The data indicated that compared with normal CCD rats, the PWMT of obese CCD rats were decreased, accompanied with an increase of ERK phosphorylation, NAD(P)H oxidase 4 (NOX4) protein expression, oxidative stress and inflammatory level in the L4 to L5 spinal cord and dorsal root ganglia (DRG). Administration of U0126 could partially elevate the PWMT and reduce the protein expression of NOX4 and the above pathological changes in obese CCD rats. In vitro, ERK phosphorylation, NOX4 protein expression increased significantly in DRG neurons under the stimulation of palmitic acid (PA), accompanied with increased secretion of inflammatory factors, oxidative stress and apoptosis level, while U0126 partially attenuated the PA-induced upregulation of NOX4 and other pathological changes. In the rescue experiment, overexpression of NOX4 abolished the above protective effect of U0126 on DRG neurons in high-fat environment. Next, we explore upstream mechanisms. Metformin gavage significantly reduced neuropathic pain in obese CCD rats. For the mechanisms, activating AMPK with metformin (obese CCD rats) or AICAR (DRG neurons in a high-fat environment) not only inhibited the ERK-NOX4 pathway, but also improved oxidative stress and inflammation caused by high-fat. In conclusion, the AMPK-ERK-NOX4 pathway may has a pivotal role in mediating obesity-induced increases in neuropathic pain.
    Keywords:  extracellular-regulated kinase; neuropathic pain; obesity
    DOI:  https://doi.org/10.18632/aging.203305
  4. Int J Biol Macromol. 2021 Jul 23. pii: S0141-8130(21)01587-7. [Epub ahead of print]
      To clarify the mechanism of semicarbazide-modified α-lactalbumin (SEM-LA)-mediated cytotoxicity, we investigated its effect on human U937 leukemia cells and MCF-7 breast cancer cells in the current study. SEM-LA induced apoptosis in U937 cells, which showed increased NOX4 expression, procaspase-8 degradation, and t-Bid production. FADD depletion inhibited SEM-LA-elicited caspase-8 activation, t-Bid production, and cell death, indicating that SEM-LA activated death receptor-mediated apoptosis in U937 cells. SEM-LA stimulated Ca2+-mediated Akt activation, which in turn increased Sp1- and p300-mediated NOX4 transcription. The upregulation of NOX4 expression promoted ROS-mediated p38 MAPK phosphorylation, leading to protein phosphatase 2A (PP2A)-regulated tristetraprolin (TTP) degradation. Remarkably, TTP downregulation increased the stability of TNF-α mRNA, resulting in the upregulation of TNF-α protein expression. Abolishment of Ca2+-NOX4-ROS axis-mediated p38 MAPK activation attenuated SEM-LA-induced TNF-α upregulation and protected U937 cells from SEM-LA-mediated cytotoxicity. The restoration of TTP expression alleviated the effect of TNF-α upregulation and cell death induced by SEM-LA. Altogether, the data in this study demonstrate that SEM-LA activates TNF-α-mediated apoptosis in U937 cells through the NOX4/p38 MAPK/PP2A axis. We think that a similar pathway can also explain the death of MCF-7 human breast cancer cells after SEM-LA treatment.
    Keywords:  NOX4; Protein phosphatase 2A; TNF-α; Tristetraprolin; p38MAPK; α-Lactalbumin
    DOI:  https://doi.org/10.1016/j.ijbiomac.2021.07.133
  5. PLoS One. 2021 ;16(7): e0255238
      INTRODUCTION: Aortic dissection (AD) is a life-threatening emergency, and lumican (LUM) is a potential Biomarker for AD diagnosis. We investigated LUM expression patterns in patients with AD and explored the molecular functions of Lum in AD mice model.METHODS: LUM expression patterns were analyzed using aortic tissues of AD patients, and serum soluble LUM (s-LUM) levels were compared between patients with acute AD (AAD) and chronic AD (CAD). Lum-knockout (Lum-/-) mice were challenged with β-aminopropionitrile (BAPN) and angiotensin II (Ang II) to induce AD. The survival rate, AD incidence, and aortic aneurysm (AA) in these mice were compared with those in BAPN-Ang II-challenged wildtype (WT) mice. Tgf-β/Smad2, Mmps, Lum, and Nox expression patterns were examined.
    RESULTS: LUM expression was detected in the intima and media of the ascending aorta in patients with AAD. Serum s-LUM levels were significantly higher in patients with AAD than CAD. Furthermore, AD-associated mortality and thoracic aortic rupture incidence were significantly higher in the Lum-/- AD mice than in the WT AD mice. However, no significant pathologic changes in AA were observed in the Lum-/- AD mice compared with the WT AD mice. The BAPN-Ang II-challenged WT and Lum-/- AD mice had higher Tgf-β, p-Smad2, Mmp2, Mmp9, and Nox4 levels than those of non-AD mice. We also found that Lum expression was significantly higher in the BAPN-Ang II-challenged WT in comparison to the unchallenged WT mice.
    CONCLUSION: LUM expression was altered in patients with AD display increased s-LUM in blood, and Lum-/- mice exhibited augmented AD pathogenesis. These findings support the notion that LUM is a biomarker signifying the pathogenesis of injured aorta seen in AAD. The presence of LUM is essential for maintenance of connective tissue integrity. Future studies should elucidate the mechanisms underlying LUM association in aortic changes.
    DOI:  https://doi.org/10.1371/journal.pone.0255238