bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2021‒02‒14
twelve papers selected by
Laia Caja Puigsubira
Uppsala University


  1. Free Radic Biol Med. 2021 Feb 05. pii: S0891-5849(21)00069-1. [Epub ahead of print]
      The epigenetic landscape describes the chromatin structure of the eukaryotic genome and is therefore the major determinant of gene transcription and hence cellular phenotype. The molecular processes which act to shape the epigenetic landscape through cellular differentiation are thus central to cellular determination and specification. In addition, cellular adaptation to (patho)-physiological stress requires dynamic and reversible chromatin remodelling. It is becoming clear that redox-dependent molecular mechanisms are important determinants of this epigenetic regulation. NADPH oxidases generate reactive oxygen species (ROS) to activate redox-dependent signalling pathways in response to extracellular and intracellular environmental cues. This mini review aims to summarise the current knowledge of the role of NADPH oxidases in redox-dependent chromatin remodelling, and how epigenetic changes might feedback and impact upon the transcriptional expression of these ROS-producing enzymes themselves. The potential physiological significance of this relationship in the control of cellular differentiation and homeostasis by Nox4, specifically, is discussed.
    Keywords:  DNA methylation; Epigenetics; Histone acetylation; Histone methylation; Nox4; One-carbon metabolism; Redox regulation
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.01.052
  2. FASEB J. 2021 Mar;35(3): e21403
      The retinal pigment epithelium (RPE) undergoes characteristic structural changes and epithelial-mesenchymal transition (EMT) during normal aging, which are exacerbated in age-related macular degeneration (AMD). Although the pathogenic mechanisms of aging and AMD remain unclear, transforming growth factor-β1 (TGF-β1) is known to induce oxidative stress, morphometric changes, and EMT as a senescence-promoting factor. In this study, we examined whether intravitreal injection of TGF-β1 into the mouse eye elicits senescence-like morphological alterations in the RPE and if this can be prevented by suppressing mammalian target of rapamycin complex 1 (mTORC1) or NADPH oxidase (NOX) signaling. We verified that intravitreal TGF-β1-induced stress fiber formation and EMT in RPE cells, along with age-associated morphometric changes, including increased variation in cell size and reduced cell density. In RPE cells, exogenous TGF-β1 increased endogenous expression of TGF-β1 and upregulated Smad3-ERK1/2-mTORC1 signaling, increasing reactive oxygen species (ROS) production and EMT. We demonstrated that inhibition of the mTORC1-NOX4 pathway by pretreatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-dependent protein kinase, or GKT137831, a NOX1/4 inhibitor, decreased ROS generation, prevented stress fiber formation, attenuated EMT, and improved the regularity of the RPE structure in vitro and in vivo. These results suggest that intravitreal TGF-β1 injection could be used as a screening model to investigate the aging-related structural and functional changes to the RPE. Furthermore, the regulation of TGF-β-mTORC1-NOX signaling could be a potential therapeutic target for reducing pathogenic alterations in aged RPE and AMD.
    Keywords:  TGF-β1; epithelial-mesenchymal transition; mTORC1-NOX signaling; retinal pigment epithelium; senescence
    DOI:  https://doi.org/10.1096/fj.202001939RR
  3. Int J Mol Sci. 2021 Feb 10. pii: 1764. [Epub ahead of print]22(4):
      Endogenous factors involved in the progression of cisplatin nephropathy remain undetermined. Here, we demonstrate the toxico-pathological roles of indoxyl sulfate (IS), a sulfate-conjugated uremic toxin, and sulfotransferase 1A1 (SULT1A1), an enzyme involved in its synthesis, in cisplatin-induced acute kidney injury using Sult1a1-deficient (Sult1a1-/- KO) mice. With cisplatin administration, severe kidney dysfunction, tissue damage, and apoptosis were attenuated in Sult1a1-/- (KO) mice. Aryl hydrocarbon receptor (AhR) expression was increased by treatment with cisplatin in mouse kidney tissue. Moreover, the downregulation of antioxidant stress enzymes in wild-type (WT) mice was not observed in Sult1a1-/- (KO) mice. To investigate the effect of IS on the reactive oxygen species (ROS) levels, HK-2 cells were treated with cisplatin and IS. The ROS levels were significantly increased compared to cisplatin or IS treatment alone. IS-induced increases in ROS were reversed by downregulation of AhR, xanthine oxidase (XO), and NADPH oxidase 4 (NOX4). These findings suggest that SULT1A1 plays toxico-pathological roles in the progression of cisplatin-induced acute kidney injury, while the IS/AhR/ROS axis brings about oxidative stress.
    Keywords:  acute kidney injury (AKI); aryl hydrocarbon receptor (AhR); indoxyl sulfate (IS); reactive oxygen species (ROS); sulfotransferase 1A1 (SULT1A1)
    DOI:  https://doi.org/10.3390/ijms22041764
  4. Antioxidants (Basel). 2021 Feb 04. pii: 238. [Epub ahead of print]10(2):
      Glaucoma is characterised by loss of retinal ganglion cells, and their axons and many pathophysiological processes are postulated to be involved. It is increasingly understood that not one pathway underlies glaucoma aetiology, but rather they occur as a continuum that ultimately results in the apoptosis of retinal ganglion cells. Oxidative stress is recognised as an important mechanism of cell death in many neurodegenerative diseases, including glaucoma. NADPH oxidase (NOX) are enzymes that are widely expressed in vascular and non-vascular cells, and they are unique in that they primarily produce reactive oxygen species (ROS). There is mounting evidence that NOX are an important source of ROS and oxidative stress in glaucoma and other retinal diseases. This review aims to provide a perspective on the complex role of oxidative stress in glaucoma, in particular how NOX expression may influence glaucoma pathogenesis as illustrated by different experimental models of glaucoma and highlights potential therapeutic targets that may offer a novel treatment option to glaucoma patients.
    Keywords:  NOX; glaucoma; neurodegeneration; oxidative stress; reactive oxygen species; retinal ganglion cells
    DOI:  https://doi.org/10.3390/antiox10020238
  5. Antioxidants (Basel). 2021 Jan 29. pii: 197. [Epub ahead of print]10(2):
      Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
    Keywords:  ATP-sensitive K+ channel; GLP-1; GPR40; NADPH oxidase 4; TRPM channels; branched-chain ketoacid oxidation; fatty-acid-stimulated insulin secretion; insulin secretion; pancreatic β-cells; redox signaling
    DOI:  https://doi.org/10.3390/antiox10020197
  6. Antioxidants (Basel). 2021 Jan 29. pii: 194. [Epub ahead of print]10(2):
      Oxidative stress constitutes a key molecular mechanism in the development of cardiovascular diseases. A potential relationship between reactive oxygen species (ROS) driven by the NADPH oxidase family (NOX) and the unfolded protein response (UPR) has been postulated. Nevertheless, there is a lack of information about the crosstalk between NOX5 homologue and the UPR in a cardiovascular context. The main aim was to analyze NOX5-mediated ROS effects in the UPR and its importance in cardiovascular diseases. To this effect, we used an adenoviral NOX5-β overexpression model in human aortic endothelial cells (HAEC) and a conditional endothelial NOX5 knock-in mouse. Using expression arrays, we investigated NOX5-induced genomic changes in HAEC. Compared with the control HAEC, 298 genes were differentially expressed. Gene ontology analysis revealed the activation of numerous cellular routes, the most relevant being the UPR pathway. Using real-time PCR and Western Blot experiments, we confirmed that NOX5 overexpression induced changes in the expression of the UPR components, which were associated with increased apoptosis. Moreover, in endothelial-specific NOX5 knock-in mice, we found changes in the expression of the UPR components genes. In these mice, myocardial infarction was performed by permanent coronary artery ligation; however, NOX5 expression was not associated with differences in the UPR components mRNA levels. In these animals, we found significant associations between the UPR components gene expression and echocardiographic parameters. Our data support the idea that NOX5-derived ROS may modulate the UPR pathway in endothelial cells, which might play a relevant role in cardiac physiology.
    Keywords:  NADPH oxidase 5; chronic infarction; endothelial cells; oxidative stress; unfolded protein response
    DOI:  https://doi.org/10.3390/antiox10020194
  7. Biosci Rep. 2021 Feb 10. pii: BSR20202924. [Epub ahead of print]
      Ferroptosis, a novel type of programmed cell death, is involved in inflammation and oxidation of various human diseases, including diabetic kidney disease. The present study explored the role of high-mobility group box-1 (HMGB1) on the regulation of ferroptosis in mesangial cells in response to high glucose. Compared to healthy control, levels of serum ferritin, lactate dehydrogenase (LDH), reactive oxygen species (ROS), malonaldehyde (MDA) and high mobility group box 1 (HMGB1) were significantly elevated in diabetic nephropathy (DN) patients, accompanied with deregulated ferroptosis-related molecules, including long-chain acyl-CoA synthetase 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (PTGS2), NADPH oxidase 1 (NOX1), and glutathione peroxidase 4 (GPX4). In vitro assay revealed that erastin and high glucose both induced ferroptosis in mesangial cells. Suppression of HMGB1 restored cellular proliferation, prevented ROS and LDH generation, decreased ACSL4, PTGS2, and NOX1, and increased GPX4 levels in mesangial cells. Furthermore, nuclear factor E2-related factor 2 (Nrf2) was decreased in DN patients and high glucose mediated translocation of HMGB1 in mesangial cells. Knockdown of HMGB1 suppressed high glucose-induced activation of TLR4/NF-κB axis and promoted Nrf2 expression as well as its downstream targets including HO-1, NQO-1, GCLC and GCLM. Collectively, these findings suggest that HMGB1 regulates glucose-induced ferroptosis via Nrf2 pathway in mesangial cells.
    Keywords:  HMGB1; Nrf2; diabetic kidney disease; ferroptosis
    DOI:  https://doi.org/10.1042/BSR20202924
  8. Free Radic Biol Med. 2021 Feb 03. pii: S0891-5849(21)00068-X. [Epub ahead of print]
      BACKGROUND: Platelets release platelet-derived extracellular vesicles (PDEVs) upon activation - in a process that is regulated by generation of reactive oxygen species (ROS). Platelet NADPH oxidase-1 (Nox-1) contributes to ROS generation and thrombus formation downstream of the collagen receptor GPVI.OBJECTIVES: We aimed to investigate whether PDEVs contain Nox-1 and whether this is relevant for PDEV-induced platelet activation.
    METHODS: PDEVs were isolated through serial centrifugation after platelet activation with thrombin receptor agonist TRAP-6 (activated PDEVs) or in the absence of agonist (resting PDEVs). The physical properties of PDEVs were analysed through nanoparticle tracking analysis. Nox-1 levels, fibrinogen binding and P-selectin exposure were measured using flow cytometry, and protein levels quantified by immunoblot analysis. ROS were quantified using DCF fluorescence and electron paramagnetic resonance.
    RESULTS: Nox-1 was found to be increased on the platelet outer membrane upon activation and was found to be present in PDEVs. PDEVs induced platelet activation, while co-addition of GPVI agonist collagen-related peptide (CRP) did not potentiate this response. PDEVs were shown to be able to generate superoxide in a process at least partially mediated by Nox-1, while Nox-1 inhibition with ML171 (also known as 2-APT) did not influence PDEV production. Finally, inhibition of Nox-1 abrogated PDEV-mediated platelet activation.
    CONCLUSIONS: PDEVs are able to generate superoxide, bind to and activate platelets in a process mediated by Nox-1. These data provide novel mechanisms by which Nox-1 potentiates platelet responses, thus proposing Nox-1 inhibition as a feasible strategy to treat and prevent thrombotic diseases.
    Keywords:  Extracellular vesicles; NADPH Oxidase; Platelet activation; Platelets; Redox biology
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.01.051
  9. Antioxidants (Basel). 2021 Feb 04. pii: 235. [Epub ahead of print]10(2):
      Previously, we have shown TGF-β-induced NOX4 expression is involved in the epithelial-to-mesenchymal transition (EMT), a process critical for cancer metastasis, and that wild-type (WT) and mutant (Mut) p53 have divergent effects on TGF-β induction of NOX4: WT-p53 suppresses whereas Mut-p53 augments NOX4 mRNA and protein production in several tumor cell models. We sought to validate and extend our model by analyzing whole-exome data of primary tumor samples in The Cancer Genome Atlas (TCGA). We constructed a Pan-Cancer dataset from 23 tumor types and explored NOX4 expression patterns in relation to EMT and patient survival. NOX4 mRNA levels increase as a function of cancer progression in several cancers and correlate with Mut-p53 mRNA and genes involved in programs of EMT, cellular adhesion, migration, and angiogenesis. Tumor macrophages appear to be a source of NOX2, whose association with genetic programs of cancer progression emulate that of NOX4. Notably, increased NOX4 expression is linked to poorer survival in patients with Mut-TP53, but better survival in patients with WT-TP53. NOX4 is negatively associated with markers of apoptosis and positively with markers of proliferation in patients with Mut-TP53, consistent with their poorer survival. These findings suggest that TP53 mutations could "switch" NOX4 from being protective and an indicator of good prognosis to deleterious by promoting programs favoring cancer progression.
    Keywords:  EMT; NADPH oxidase; NOX4; Pan-Cancer; TCGA; bioinformatics; p53
    DOI:  https://doi.org/10.3390/antiox10020235
  10. Food Chem Toxicol. 2021 Feb 09. pii: S0278-6915(21)00089-2. [Epub ahead of print] 112055
      Patulin (PAT) is a kind of mycotoxins that commonly found in decayed fruits and their products. Our previous studies have shown that PAT induced cell apoptosis and the overproduction of reactive oxygen species (ROS) in human embryonic kidney (HEK293) cells. The present study aimed to further investigate the functional role of NADPH oxidase, one of the main cellular sources of ROS, in PAT-induced apoptosis and oxidative damage in HEK293 cells. We demonstrated that the protein and mRNA expression levels of NADPH oxidase catalytic subunit NOX2 and regulatory subunit p47phox were up-regulated under PAT stress. Inhibiting of NADPH oxidase with the specific antagonist diphenyleneiodonium (DPI) suppressed cytotoxicity and apoptosis induced by PAT as evidenced by the increase of cell viability, the decrease of LDH release and the inhibition of caspase activities. Furthermore, DPI re-established mitochondrial membrane potential (MMP) and enhanced cellular ATP content. Importantly, DPI supplementation elevated endogenous GSH contents as well as the ratio of GSH/GSSG. Meanwhile, the antioxidant-enzyme activities of GPx, GR, CAT and SOD were significantly promoted. Collectively, our results suggested that NADPH oxidase played a critical role in PAT-induced nephrotoxicity, and inhibition of NADPH oxidase by DPI attenuated cell injury and apoptosis via regulation of oxidative damage.
    Keywords:  Apoptosis; Diphenyleneiodonium (DPI); HEK293 cells; NADPH oxidase; Oxidative stress; Patulin (PAT)
    DOI:  https://doi.org/10.1016/j.fct.2021.112055
  11. J Neurosci. 2021 Feb 08. pii: JN-RM-2121-20. [Epub ahead of print]
      Repetitive behavior is a widely observed neuropsychiatric symptom. Abnormal dopaminergic signaling in the striatum is one of the factors associated with behavioral repetition; however, the molecular mechanisms underlying the induction of repetitive behavior remain unclear. Here, we demonstrated that the NOX1 isoform of the superoxide-producing enzyme NADPH oxidase regulated repetitive behavior in mice by facilitating excitatory synaptic inputs in the central striatum (CS). In male C57Bl/6J mice, repeated stimulation of D2 receptors induced abnormal behavioral repetition and perseverative behavior. Nox1 deficiency or acute pharmacological inhibition of NOX1 significantly shortened repeated D2 receptor stimulation-induced repetitive behavior without affecting motor responses to a single D2 receptor stimulation. Among brain regions, Nox1 showed enriched expression in the striatum, and repeated dopamine D2 receptor stimulation further increased Nox1 expression levels in the CS, but not in the dorsal striatum. Electrophysiological analyses revealed that repeated D2 receptor stimulation facilitated excitatory inputs in the CS indirect pathway medium spiny neurons (iMSNs), and this effect was suppressed by the genetic deletion or pharmacological inhibition of NOX1. Nox1 deficiency potentiated protein tyrosine phosphatase activity and attenuated the accumulation of activated Src kinase, which is required for the synaptic potentiation in CS iMSNs. Inhibition of NOX1 or β-arrestin in the CS was sufficient to ameliorate repetitive behavior. Striatal-specific Nox1-knockdown also ameliorated repetitive and perseverative behavior. Collectively, these results indicate that NOX1 acts as an enhancer of synaptic facilitation in CS iMSNs and plays a key role in the molecular link between abnormal dopamine signaling and behavioral repetition and perseveration.Significance StatementBehavioral repetition is a form of compulsivity, which is one of the core symptoms of psychiatric disorders, such as obsessive-compulsive disorder. Perseveration is also a hallmark of such disorders. Both clinical and animal studies suggest important roles of abnormal dopaminergic signaling and striatal hyperactivity in compulsivity; however, the precise molecular link between them remains unclear. Here, we demonstrated the contribution of NOX1 to behavioral repetition induced by repeated stimulation of D2 receptors. Repeated stimulation of D2 receptors upregulated Nox1 mRNA in a striatal subregion-specific manner. The upregulated NOX1 promoted striatal synaptic facilitation in iMSNs by enhancing phosphorylation signaling. These results provide a novel mechanism for D2 receptor-mediated excitatory synaptic facilitation and indicate the therapeutic potential of NOX1 inhibition in compulsivity.
    DOI:  https://doi.org/10.1523/JNEUROSCI.2121-20.2021
  12. Cancers (Basel). 2021 Feb 08. pii: 687. [Epub ahead of print]13(4):
      While a higher incidence of lung cancer in subjects with previous tuberculous infection has been reported in epidemiologic data, the mechanism by which previous tuberculosis affects lung cancer remains unclear. We investigated the role of NOX4 in tuberculous pleurisy-assisted tumorigenicity both in vitro and in vivo.Heat-killed Mycobacterium tuberculosis-stimulated mesothelial cells augmented the migrationand invasive potential of lung cancer cells in a NOX4-dependent manner. Mice with Mycobacterium bovis bacillus Calmette-Guérin (BCG) pleural infection exhibited increased expression of NOX4 and enhanced malignant potential of lung cancer compared to mice with intrathoracic injection of phosphate-buffered saline. The BCG+ KLN205 (KLN205 cancer cell injection after BCG treatment) NOX4 KO mice group showed reduced tuberculous fibrosis-promoted metastatic potential of lung cancer, increased autophagy, and decreased expression of TGF-β, IL-6, and TNF-α compared to the BCG+KLN205 WT mice group. Finally, NOX4 silencing mitigated the malignant potential of A549 cells that was enhanced by tuberculous pleural effusion and restored autophagy signaling. Our results suggest that the NOX4-autophagy axis regulated by tuberculous fibrosis could result in enhanced tumorigenic potential and that NOX4-P62 might serve as a target for tuberculous fibrosis-induced lung cancer.
    Keywords:  NOX4; autophagy; lung cancer; tuberculous fibrosis
    DOI:  https://doi.org/10.3390/cancers13040687