bims-noxint Biomed News
on NADPH oxidases in tumorigenesis
Issue of 2020‒08‒23
six papers selected by
Laia Caja Puigsubira
Uppsala University


  1. Redox Biol. 2020 Aug 02. pii: S2213-2317(20)30874-0. [Epub ahead of print]36 101669
      NADPH oxidases produce reactive oxygen species that differ in localization, type and concentration. Within the Nox family only Nox4 produces H2O2 which can directly oxidize cysteine residues. With this post-translational modification, activity, stability, localization and protein-protein interactions of the affected protein is altered. Nox4 controls differentiation, cellular homeostasis and prevents inflammation. Therefore, is likely that epigenetic mechanisms contribute to the effects of Nox4. One group of epigenetic modifiers are class IIa histone deacetylases (HDACs). We hypothesize that Nox4-derived H2O2 oxidizes HDACs and analyzed whether HDACs can be differentially oxidized by Nox4. As an artificial system, we utilized HEK293 cells, overexpressing Nox4 in a tetracycline-inducible manner. HDAC4 was oxidized upon Nox4 overexpression. Additionally, Nox4 overexpression increased HDAC4 phosphorylation on Ser632. H2O2 disrupted HDAC4/Mef2A complex, which de-represses Mef2A. In endothelial cells such as HUVECs and HMECs, overexpression of HDAC4 significantly reduced tube formation. Overexpression of a redox insensitive HDAC4 had no effect on endothelial tube formation. Treatment with H2O2, induction of Nox4 expression by treatment of the cells with TGFβ and co-overexpression of Nox4 not only induced phosphorylation of HDAC4, but also restored the repressive effect of HDAC4 for tube formation, while overexpression of a redox dead mutant of Nox4 did not. Taken together, Nox4 oxidizes HDAC4, increases its phosphorylation, and eventually ensures proper tube formation by endothelial cells.
    Keywords:  HDAC4; NADPH oxidase; Nox4
    DOI:  https://doi.org/10.1016/j.redox.2020.101669
  2. FASEB J. 2020 Aug 16.
      NADPH oxidase 4 (NOX4) is the most abundant NOX isoform in the kidney; however, its importance for renal function has only recently emerged. The NOX4-dependent pathway regulates many factors essential for proper sodium handling in the distal nephron. However, the functional significance of this pathway in the control of sodium reabsorption during the initiation of chronic kidney disease is not established. The goal of this study was to test Nox4-dependent ENaC regulation in two models: SS hypertension and STZ-induced type 1 diabetes. First, we showed that genetic ablation of Nox4 in Dahl salt-sensitive (SS) rat attenuated a high-salt (HS)-induced increase in epithelial Na+ channel (ENaC) activity in the cortical collecting duct. We also found that H2 O2 upregulated ENaC activity, and H2 O2 production was reduced in both the renal cortex and medulla in SSNox4-/- rats fed an HS diet. Second, in the streptozotocin model of hyperglycemia-induced renal injury ENaC activity in hyperglycemic animals was elevated in SS but not SSNox4-/- rats. NaCl cotransporter (NCC) expression was increased compared to healthy controls, while expression values between SS and SSNox4-/- groups were similar. These data emphasize a critical contribution of the NOX4-mediated pathway in maladaptive upregulation of ENaC-mediated sodium reabsorption in the distal nephron in the conditions of HS- and hyperglycemia-induced kidney injury.
    Keywords:  ENaC; H2O2; NOX4; chronic kidney disease; diabetic nephropathy; salt-sensitive hypertension
    DOI:  https://doi.org/10.1096/fj.202000966RR
  3. JBMR Plus. 2020 Aug;4(8): e10376
      Estrogen deficiency and aging play critical roles in the pathophysiology of bone as a result of increased oxidative stress. It has been suggested that prevention of NADPH oxidase- (Nox-) dependent accumulation of ROS may be an approach to potentially minimize bone loss caused by these conditions. Using ovariectomized (OVX) and Nox4 gene-deletion mouse models, we investigated the role of Nox4 in OVX-induced bone loss and osteoblast senescence signaling. Six-month-old WT C57Bl6 mice were allocated to a sham control group, OVX, and OVX plus E2 treatment group for 8 weeks. Decreased bone mass including BMD and BMC were found in the OVX group compared with the sham control (p < 0.05); E2 treatment completely reversed OVX-induced bone loss. Interestingly, the prevention of OVX-induced bone loss by E2 was associated with the elimination of increased senescence signaling in bone osteoblastic cells from the OVX group. E2 blunted OVX-induced p53 and p21 overexpression, but not p16 and Nox4 in bone. In addition, 8- and 11-month-old Nox4 KO female mice were OVX for 8 weeks. Significant bone loss and increased bone osteoblastic cell senescence signaling occurred not only in Nox4 KO OVX mice compared with sham-operated animals, but also in 11-month-old Nox4 KO sham mice compared with 8-month-old Nox4 KO sham mice (p < 0.05). These data suggest that Nox4-mediated ROS in bone osteoblastic cells may be dispensable for sex steroid deficiency-induced bone loss and senescence. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
    Keywords:  NOX4; OSTEOBLAST; SENESCENCE; SEX STEROID DEFICIENCY
    DOI:  https://doi.org/10.1002/jbm4.10376
  4. Antioxidants (Basel). 2020 Aug 13. pii: E743. [Epub ahead of print]9(8):
      Neurodegenerative disorders, such as Alzheimer's disease, are a global public health burden with poorly understood aetiology. Neuroinflammation and oxidative stress (OS) are undoubtedly hallmarks of neurodegeneration, contributing to disease progression. Protein aggregation and neuronal damage result in the activation of disease-associated microglia (DAM) via damage-associated molecular patterns (DAMPs). DAM facilitate persistent inflammation and reactive oxygen species (ROS) generation. However, the molecular mechanisms linking DAM activation and OS have not been well-defined; thus targeting these cells for clinical benefit has not been possible. In microglia, ROS are generated primarily by NADPH oxidase 2 (NOX2) and activation of NOX2 in DAM is associated with DAMP signalling, inflammation and amyloid plaque deposition, especially in the cerebrovasculature. Additionally, ROS originating from both NOX and the mitochondria may act as second messengers to propagate immune activation; thus intracellular ROS signalling may underlie excessive inflammation and OS. Targeting key kinases in the inflammatory response could cease inflammation and promote tissue repair. Expression of antioxidant proteins in microglia, such as NADPH dehydrogenase 1 (NQO1), is promoted by transcription factor Nrf2, which functions to control inflammation and limit OS. Lipid droplet accumulating microglia (LDAM) may also represent a double-edged sword in neurodegenerative disease by sequestering peroxidised lipids in non-pathological ageing but becoming dysregulated and pro-inflammatory in disease. We suggest that future studies should focus on targeted manipulation of NOX in the microglia to understand the molecular mechanisms driving inflammatory-related NOX activation. Finally, we discuss recent evidence that therapeutic target identification should be unbiased and founded on relevant pathophysiological assays to facilitate the discovery of translatable antioxidant and anti-inflammatory therapeutics.
    Keywords:  Alzheimer’s disease; NADPH oxidase (NOX); lipid droplets; microglia; neurodegeneration; neuroinflammation; oxidative stress
    DOI:  https://doi.org/10.3390/antiox9080743
  5. Antioxidants (Basel). 2020 Aug 14. pii: E754. [Epub ahead of print]9(8):
      The chronic activation of the Janus kinase/signal transducer and activator of the transcription (JAK/STAT) pathway is linked to oxidative stress, inflammation and cell proliferation. Suppressors of cytokine signaling (SOCS) proteins negatively regulate the JAK/STAT, and SOCS1 possesses a small kinase inhibitory region (KIR) involved in the inhibition of JAK kinases. Several studies showed that KIR-SOCS1 mimetics can be considered valuable therapeutics in several disorders (e.g., diabetes, neurological disorders and atherosclerosis). Herein, we investigated the antioxidant and atheroprotective effects of PS5, a peptidomimetic of KIR-SOCS1, both in vitro (vascular smooth muscle cells and macrophages) and in vivo (atherosclerosis mouse model) by analyzing gene expression, intracellular O2•- production and atheroma plaque progression and composition. PS5 was revealed to be able to attenuate NADPH oxidase (NOX1 and NOX4) and pro-inflammatory gene expression, to upregulate antioxidant genes and to reduce atheroma plaque size, lipid content and monocyte/macrophage accumulation. These findings confirm that KIR-SOCS1-based drugs could be excellent antioxidant agents to contrast atherosclerosis.
    Keywords:  JAK/STAT; atherosclerosis; cytokine signaling; mimetic peptides; oxidative stress; suppressor of cytokine signaling 1 (SOCS1)
    DOI:  https://doi.org/10.3390/antiox9080754
  6. Cancer Res. 2020 Aug 19. pii: canres.3228.2019. [Epub ahead of print]
      Regulation of the stemness factor SOX2 by cytokine stimuli controls self-renewal and differentiation in cells. Activating mutations in epidermal growth factor receptor (EGFR) are proven therapeutic targets for tyrosine kinase inhibitors (TKI) in lung adenocarcinoma, but acquired resistance to TKI inevitably occurs. The mechanism by which stemness and differentiation signaling emerge in lung cancers to affect TKI tolerance and lung cancer dissemination has yet to be elucidated. Here we report that crosstalk between SOX2 and TGF-β signaling affects lung cancer cell plasticity and TKI tolerance. TKI treatment favored selection of lung cancer cells displaying mesenchymal morphology with deficient SOX2 expression, whereas SOX2 expression promoted TKI sensitivity and inhibited the mesenchymal phenotype. Preselection of EGFR-mutant lung cancer cells with the mesenchymal phenotype diminished SOX2 expression and TKI sensitivity, whereas SOX2 silencing induced vimentin but suppressed BCL2L11 expression and promoted TKI tolerance. TGF-β stimulation downregulated SOX2 and induced epithelial-to-mesenchymal transdifferentiation accompanied by increased TKI tolerance, which can interfere with ectopic SOX2 expression. SOX2-positive lung cancer cells exhibited a lower dissemination capacity than their SOX2-negative counterparts. Tumors expressing low SOX2 and high vimentin signature were associated with worse survival outcomes in patients with EGFR mutations. These findings provide insights into how cancer cell plasticity regulated by SOX2 and TGF-β signaling affects EGFR-TKI tolerance and lung cancer dissemination.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-19-3228