bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2023‒10‒01
ten papers selected by
the Merkel lab, Ludwig-Maximilians University



  1. Nanoscale Adv. 2023 Sep 26. 5(19): 5256-5262
      Small interfering RNA (siRNA) can trigger RNA interference (RNAi) to therapeutically silence disease-related genes in human cells. The approval of siRNA therapeutics by the FDA in recent years generated a new hope in novel and efficient siRNA therapeutics. However, their therapeutic application is still limited by the lack of safe and efficient transfection vehicles. In this study, we successfully synthesized a novel amphiphilic poly(β-amino ester) based on the polyamine spermine, hydrophobic decylamine and 1,4-butanediol diacrylate, which was characterized by 1H NMR spectroscopy and size exclusion chromatography (SEC, Mn = 6000 Da). The polymer encapsulated siRNA quantitatively from N/P 5 on as assessed by fluorescence intercalation while maintaining optimal polyplex sizes and zeta potentials. Biocompatibility and cellular delivery efficacy were also higher than those of the commonly used cationic, hyperbranched polymer polyethylenimine (PEI, 25 kDa). Optimized formulations mediated around 90% gene silencing in enhanced green fluorescence protein expressing H1299 cells (H1299-eGFP) as determined by flow cytometry. These results suggest that spermine-based, amphiphilic poly(β-amino ester)s are very promising candidates for efficient siRNA delivery.
    DOI:  https://doi.org/10.1039/d3na00272a
  2. J Control Release. 2023 Sep 21. pii: S0168-3659(23)00618-1. [Epub ahead of print]
      RNA therapies have recently taken a giant leap forward with the approval of Onpattro™, a siRNA therapy delivered using a lipid nanoparticle (LNP), and the LNP-enabled mRNA vaccines against COVID19, which are the first mRNA drugs to reach the marketplace. The latter medicines have illustrated that stability is a significant challenge in the distribution of RNA drugs using non-viral delivery systems, particularly in areas without cold chain storage. Here, we describe a proof-of-concept study on the engineering of an LNP mRNA formulation suitable for spray drying. This process produced a dry powder formulation that maintained stability and preserved mRNA functionality with increased performance compared to liquid formulations stored two weeks at 4 °C. Intratracheal delivery of spray dried LNPs loaded with eGFP mRNA to rats resulted in the production of the eGFP protein in a range of cell types including bronchiolar epithelial cells, macrophages and type II pneumocytes; cell types involved in adaptive immunity and which would be valuable targets for inhaled vaccines against respiratory pathogens. Together, these data show that spray drying of LNPs enhances their stability and may enable RNA delivery to the lung for protein replacement therapy, gene editing, vaccination, and beyond.
    Keywords:  Drug delivery; Inhalation; Lipid nanoparticles; RNA therapeutics; Spray drying; mRNA
    DOI:  https://doi.org/10.1016/j.jconrel.2023.09.031
  3. Curr Protoc. 2023 Sep;3(9): e898
      mRNA vaccines have recently generated significant interest due to their success during the COVID-19 pandemic. Their success is due to advances in mRNA design and encapsulation into ionizable lipid nanoparticles (iLNPs). This has highlighted the potential for the use of mRNA-iLNPs in other settings such as cancer, gene therapy, or vaccines for different infectious diseases. Here, we describe the production of mRNA-iLNPs using commercially available reagents that are suitable for use as vaccines and therapeutics. This article contains detailed protocols for the synthesis of mRNA by in vitro transcription with enzymatic capping and tailing and the encapsulation of the mRNA into iLNPs using the ionizable lipid DLin-MC3-DMA. DLin-MC3-DMA is often used as a benchmark for new formulations and provides an efficient delivery vehicle for screening mRNA design. The protocol also describes how the formulation can be adapted to other lipids. Finally, a stepwise methodology is presented for the characterization and quality control of mRNA-iLNPs, including measuring mRNA concentration and encapsulation efficiency, particle size, and zeta potential. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synthesis of mRNA by in vitro transcription and enzymatic capping and tailing Basic Protocol 2: Encapsulation of mRNA into ionizable lipid nanoparticles Alternate Protocol: Small-scale encapsulation of mRNA using preformed vesicles Basic Protocol 3: Characterization and quality control of mRNA ionizable lipid nanoparticles.
    Keywords:  delivery; iLNP; ionizable lipid nanoparticle; mRNA; quality control; vaccine
    DOI:  https://doi.org/10.1002/cpz1.898
  4. J Funct Biomater. 2023 Aug 23. pii: 437. [Epub ahead of print]14(9):
      Lipid nanoparticles (LNPs) are spherical vesicles composed of ionizable lipids that are neutral at physiological pH. Despite their benefits, unmodified LNP drug delivery systems have substantial drawbacks, including a lack of targeted selectivity, a short blood circulation period, and in vivo instability. lipid-polymer hybrid nanoparticles (LPHNPs) are the next generation of nanoparticles, having the combined benefits of polymeric nanoparticles and liposomes. LPHNPs are being prepared from both natural and synthetic polymers with various techniques, including one- or two-step methods, emulsification solvent evaporation (ESE) method, and the nanoprecipitation method. Varieties of LPHNPs, including monolithic hybrid nanoparticles, core-shell nanoparticles, hollow core-shell nanoparticles, biomimetic lipid-polymer hybrid nanoparticles, and polymer-caged liposomes, have been investigated for various drug delivery applications. However, core-shell nanoparticles having a polymeric core surrounded by a highly biocompatible lipid shell are the most commonly explored LPHNPs for the treatment of various diseases. In this review, we will shed light on the composition, methods of preparation, classification, surface functionalization, release mechanism, advantages and disadvantages, patents, and clinical trials of LPHNPs, with an emphasis on core-shell-structured LPHNPs.
    Keywords:  cancer; drug delivery; lipid–polymer hybrid nanoparticles; release mechanism; synthesis
    DOI:  https://doi.org/10.3390/jfb14090437
  5. J Control Release. 2023 Sep 21. pii: S0168-3659(23)00619-3. [Epub ahead of print]
      RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
    Keywords:  Delivery vectors; Protein carriers; RNA delivery challenges; RNA drug; RNA-based therapeutics
    DOI:  https://doi.org/10.1016/j.jconrel.2023.09.032
  6. Mol Biol Rep. 2023 Sep 23.
      Advancements in the clinical applications of small interfering RNA (siRNA) in cancer therapy have opened up new possibilities for precision medicine. siRNAs, as powerful genetic tools, have shown potential in targeting and suppressing the expression of specific genes associated with cancer progression. Their effectiveness has been further enhanced by incorporating them into nanoparticles, which protect siRNAs from degradation and enable targeted delivery. However, despite these promising developments, several challenges persist in the clinical translation of siRNA-based cancer therapy. This comprehensive review explores the progress and challenges associated with the clinical applications of siRNA in cancer therapy. This review highlights the use of siRNA-loaded nanoparticles as an effective delivery system for optimizing siRNA efficacy in various types of carcinomas and the potential of siRNA-based therapy as a genetic approach to overcome limitations associated with conventional chemotherapeutic agents, including severe drug toxicities and organ damage. Moreover, it emphasizes on the key challenges, including off-target effects, enzymatic degradation of siRNAs in serum, low tumor localization, stability issues, and rapid clearance from circulation that need to be addressed for successful clinical development of siRNA-based cancer therapy. Despite these challenges, the review identifies significant avenues for advancing siRNA technology from the laboratory to clinical settings. The ongoing progress in siRNA-loaded nanoparticles for cancer treatment demonstrates potential antitumor activities and safety profiles. By understanding the current state of siRNA-based therapy and addressing the existing challenges, we aim to pave the way for translating siRNA technology into effective oncologic clinics as an improved treatment options for cancer patients.
    Keywords:  Cancer therapy; Nanoparticles; Precision medicine; Small interfering RNA
    DOI:  https://doi.org/10.1007/s11033-023-08749-y
  7. Adv Drug Deliv Rev. 2023 Sep 27. pii: S0169-409X(23)00423-4. [Epub ahead of print] 115108
      Over the past few years, the adoption of machine learning (ML) techniques has rapidly expanded across many fields of research including formulation science. At the same time, the use of lipid nanoparticles to enable the successful delivery of mRNA vaccines in the recent COVID-19 pandemic demonstrated the impact of formulation science. Yet, the design of advanced pharmaceutical formulations is non-trivial and primarily relies on costly and time-consuming wet-lab experimentation. In 2021, our group published a review article focused on the use of ML as a means to accelerate drug formulation development. Since then, the field has witnessed significant growth and progress, reflected by an increasing number of studies published in this area. This updated review summarizes the current state of ML directed drug formulation development, introduces advanced ML techniques that have been implemented in formulation design and shares the progress on making self-driving laboratories a reality. Furthermore, this review highlights several future applications of ML yet to be fully exploited to advance drug formulation research and development.
    Keywords:  Active learning; Drug delivery; Drug development; Machine learning
    DOI:  https://doi.org/10.1016/j.addr.2023.115108
  8. mBio. 2023 Sep 28. e0129523
      Many of the current pandemic threats are caused by viruses that infect the respiratory tract. Remarkably though, the majority of vaccines and antiviral drugs are administered via alternative routes. In this perspective, we argue that the pulmonary route of administration deserves more attention in the search for novel therapeutic strategies against respiratory virus infections. Firstly, vaccines administered at the viral portal of entry can induce a broader immune response, employing the mucosal arm of the immune system; secondly, direct administration of antiviral drugs at the target site leads to superior bioavailability, enabling lower dosing and reducing the chance of side effects. We further elaborate on why the pulmonary route may induce a superior effect compared to the intranasal route of administration and provide reasons why dry powder formulations for inhalation have significant advantages over standard liquid formulations.
    Keywords:  IgA; SARS-CoV-2; aerosols; antiviral agents; dry powder formulation; dry powder inhaler; inhalation; mucosal immunity; pulmonary administration; respiratory viruses; spray drying; vaccines
    DOI:  https://doi.org/10.1128/mbio.01295-23
  9. Int J Mol Sci. 2023 Sep 13. pii: 14041. [Epub ahead of print]24(18):
      Nanoparticles are being increasingly used as drug delivery systems to enhance the delivery to and uptake by target cells and to reduce off-target toxicity of free drugs. However, although the advantages of nanoparticles as drug carriers are clear, there are still some limitations, especially in maintaining their long-term stability. Lyophilization, also known as freeze-drying, has been heavily investigated as a solution to this problem. This strategy has been shown to be effective in increasing both the long-term stability of nanoparticles and the shelf life of the drug product. However, the process is still in need of improvement in several aspects, such as the process parameters, formulation factors, and characterization techniques. This review summarizes the advantages and limitations of nanoparticles for the treatment of disease, advantages and limitations, and the status of the lyophilization of nanoparticles for therapeutic use and provides insight into both the advantages and the limitations.
    Keywords:  freeze-drying; lyophilization; lyoprotectants; nanoparticles; stability
    DOI:  https://doi.org/10.3390/ijms241814041
  10. J Funct Biomater. 2023 Sep 09. pii: 466. [Epub ahead of print]14(9):
      Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Despite advances in treatment, the prognosis remains poor, highlighting the need for novel therapeutic strategies. The present review explores the potential of targeted epidermal growth factor receptor (EGFR) nanotherapy as an alternative treatment for NSCLC, showing that EGFR-targeted nanoparticles are efficiently taken up by NSCLC cells, leading to a significant reduction in tumor growth in mouse models. Consequently, we suggest that targeted EGFR nanotherapy could be an innovative treatment strategy for NSCLC; however, further studies are needed to optimize the nanoparticles and evaluate their safety and efficacy in clinical settings and human trials.
    Keywords:  EGFR; lung cancer; nanotherapy; non-small cell lung cancer
    DOI:  https://doi.org/10.3390/jfb14090466