bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2023‒09‒10
ten papers selected by
the Merkel lab, Ludwig-Maximilians University



  1. Nanoscale. 2023 Sep 06.
      Gene delivery has great potential in modulating protein expression in specific cells to treat diseases. Such therapeutic gene delivery demands sufficient cellular internalization and endosomal escape. Of various nonviral nucleic acid delivery systems, lipid nanoparticles (LNPs) are the most advanced, but still, are very inefficient as the majority are unable to escape from endosomes/lysosomes. Here, we develop a highly efficient gene delivery system using fusogenic coiled-coil peptides. We modified LNPs, carrying EGFP-mRNA, and cells with complementary coiled-coil lipopeptides. Coiled-coil formation between these lipopeptides induced fast nucleic acid uptake and enhanced GFP expression. The cellular uptake of coiled-coil modified LNPs is likely driven by membrane fusion thereby omitting typical endocytosis pathways. This direct cytosolic delivery circumvents the problems commonly observed with the limited endosomal escape of mRNA. Therefore fusogenic coiled-coil peptide modification of existing LNP formulations to enhance nucleic acid delivery efficiency could be beneficial for several gene therapy applications.
    DOI:  https://doi.org/10.1039/d3nr02175k
  2. Angew Chem Int Ed Engl. 2023 Sep 03. e202310401
      The development of lipid nanoparticles (LNPs) has enabled a successful clinical application of mRNA vaccines. However, disclosure of design principles for the core component-ionizable lipids (ILs), improving the delivery efficacy and organ targeting of LNPs, remains a formidable challenge. Here, we reported a powerful strategy to modulate ILs in one-step chemistry using the Ugi four-component reaction (Ugi-4CR) under mild conditions. A large IL library of new structures was established simply and efficiently through a multidimensional approach, allowing us to identify the top-performing ILs in delivering mRNA via the formulated LNPs. Adjusting the skeleton of ILs has transformed the organ-specific and robust transfection in mRNA delivery from the liver to the spleen following different administration routes. Of note, a series of isomeric ILs were prepared and we found that the isomers mattered greatly in the performance of LNPs for mRNA delivery. Furthermore, owing to the bis-amide bonds formed in the Ugi-4CR reaction, the ILs within LNPs may form hydrogen bonding intermolecularly, facilitating the colloidal stabilization of LNPs. This work provides clues to the rapid discovery and rational design of IL candidates, assisting the application of mRNA therapeutics.
    Keywords:  Ionizable lipids, Lipid nanoparticles, mRNA, Multicomponent reaction
    DOI:  https://doi.org/10.1002/anie.202310401
  3. Nat Biomed Eng. 2023 Sep 07.
      To elicit optimal immune responses, messenger RNA vaccines require intracellular delivery of the mRNA and the careful use of adjuvants. Here we report a multiply adjuvanted mRNA vaccine consisting of lipid nanoparticles encapsulating an mRNA-encoded antigen, optimized for efficient mRNA delivery and for the enhanced activation of innate and adaptive responses. We optimized the vaccine by screening a library of 480 biodegradable ionizable lipids with headgroups adjuvanted with cyclic amines and by adjuvanting the mRNA-encoded antigen by fusing it with a natural adjuvant derived from the C3 complement protein. In mice, intramuscular or intranasal administration of nanoparticles with the lead ionizable lipid and with mRNA encoding for the fusion protein (either the spike protein or the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) increased the titres of antibodies against SARS-CoV-2 tenfold with respect to the vaccine encoding for the unadjuvanted antigen. Multiply adjuvanted mRNA vaccines may improve the efficacy, safety and ease of administration of mRNA-based immunization.
    DOI:  https://doi.org/10.1038/s41551-023-01082-6
  4. ACS Nano. 2023 Sep 05.
      Protein therapeutics are highly promising for complex disease treatment. However, the lack of ideal delivery vectors impedes their clinical use, especially the carriers for in vivo delivery of functional cytosolic protein. In this study, we modified poly(β amino ester)s (PAEs) with a phenyl guanidine (PG) group to enhance their suitability for cytosolic protein delivery. The effects of the PG group on protein binding, cell internalization, protein function protection, and endo/lysosomal escape were systematically evaluated. Compared to the unmodified PAEs (L3), guanidyl rich PAEs (L3PG) presented superior efficiency of protein binding and protein internalization, mainly via clathrin-mediated endocytosis. In addition, both PAEs showed robust capabilities to deliver cytosolic proteins with different molecular weight (ranging from 30 to 464 kDa) and isoelectric points (ranging from 4.3 to 9), which were significantly improved in comparison with the commercial reagents of PULsin and Pierce Protein Transection Reagent. Moreover, L3PG successfully delivered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 ribonucleoprotein (RNP) into HeLa cells expressing green fluorescent protein (GFP) and achieved more than 80% GFP expression knockout. These results demonstrated that guanidyl modification on PAEs can enhance its capabilities for intracellular delivery of cytosolic functional proteins and CRISPR/Cas9 ribonucleoprotein. The guanidyl-rich PAEs are promising nonviral vectors for functional protein delivery and potential use in protein and nuclease-based gene editing therapies.
    Keywords:  CRISPR/Cas9 ribonucleoprotein transfection; cytosolic protein delivery; gene editing; guanidyl; poly(β amino ester)s
    DOI:  https://doi.org/10.1021/acsnano.3c03269
  5. J Nanobiotechnology. 2023 Sep 08. 21(1): 324
      BACKGROUND: Targeting EBV-proteins with mRNA vaccines is a promising way to treat EBV-related tumors like nasopharyngeal carcinoma (NPC). We assume that it may sensitize tumors to immune checkpoint inhibitors.RESULTS: We developed an LMP2-mRNA lipid nanoparticle (C2@mLMP2) that can be delivered to tumor-draining lymph nodes. C2@mLMP2 exhibited high transfection efficiency and lysosomal escape ability and induced an increased proportion of CD8 + central memory T cells and CD8 + effective memory T cells in the spleen of the mice model. A strong synergistic anti-tumor effect of C2@mLMP2 in combination with αPD-1 was observed in tumor-bearing mice. The mechanism was identified to be associated with a reverse of CD8 + T cell exhaustion in the tumor microenvironment. The pathological analysis further proved the safety of the vaccine and the combined therapy.
    CONCLUSIONS: This is the first study proving the synergistic effect of the EBV-mRNA vaccine and PD-1 inhibitors for EBV-related tumors. This study provides theoretical evidence for further clinical trials that may expand the application scenario and efficacy of immunotherapy in NPC.
    Keywords:  Combined therapy; EBV; Immunotherapy; Lymph node targeting; Nasopharyngeal carcinoma; PD-1; mRNA vaccine
    DOI:  https://doi.org/10.1186/s12951-023-02069-w
  6. ACS Nano. 2023 Sep 05.
      Atherosclerosis is a common pathology present in many cardiovascular diseases. Although the current therapies (including statins and inhibitors of the serine protease PCSK9) can effectively reduce low-density lipoprotein (LDL) cholesterol levels to guideline-recommended levels, major adverse cardiovascular events still occur frequently. Indeed, the subendothelial retention of lipoproteins in the artery wall triggers multiple events of inflammation in macrophages and is a major contributor to the pathological progression of atherosclerosis. It has been gradually recognized that modulating inflammation is, therefore, an attractive avenue to forestall and treat atherosclerosis and its complications. Unfortunately, challenges with specificity and efficacy in managing plaque inflammation have hindered progress in atherosclerosis treatment. Herein, we report an NP-mediated mRNA therapeutic approach to target atherosclerotic lesional macrophages, modulating inflammation in advanced atherosclerotic lesions for the treatment of atherosclerosis. We demonstrated that the targeted NPs containing IL-10 mRNA colocalized with M2-like macrophages and induced IL-10 production in atherosclerotic plaques following intravenous administration to Western diet (WD)-fed Ldlr-/- mice. Additionally, the lesions showed a significantly alleviated inflammatory response, as evidenced by reduced oxidative stress and macrophage apoptosis, resulting in decreased lipid deposition, diminished necrotic areas, and increased fiber cap thickness. These results demonstrate the successful delivery of mRNA therapeutics to macrophage-enriched plaques in a preclinical model of advanced atherosclerosis, showing that this targeted NP inflammation management approach has great potential for translation into a wide range of clinical applications.
    Keywords:  atherosclerosis; inflammation-resolving IL-10; lesional macrophages; mRNA; targeted nanoparticles
    DOI:  https://doi.org/10.1021/acsnano.3c00958
  7. Front Immunol. 2023 ;14 1116299
      Recent studies have suggested that CD8+ liver-resident memory T (TRM) cells are crucial in the protection against liver-stage malaria. We used liver-directed mRNA-containing lipid nanoparticles (mRNA-LNPs) to induce liver TRM cells in a murine model. Single-dose intravenous injections of ovalbumin mRNA-LNPs effectively induced antigen-specific cytotoxic T lymphocytes in a dose-dependent manner in the liver on day 7. TRM cells (CD8+ CD44hi CD62Llo CD69+ KLRG1-) were induced 5 weeks after immunization. To examine the protective efficacy, mice were intramuscularly immunized with two doses of circumsporozoite protein mRNA-LNPs at 3-week intervals and challenged with sporozoites of Plasmodium berghei ANKA. Sterile immunity was observed in some of the mice, and the other mice showed a delay in blood-stage development when compared with the control mice. mRNA-LNPs therefore induce memory CD8+ T cells that can protect against sporozoites during liver-stage malaria and may provide a basis for vaccines against the disease.
    Keywords:  cellular immunity; lipid nanoparticles; liver-stage malaria; mRNA; resident memory T cells; vaccine
    DOI:  https://doi.org/10.3389/fimmu.2023.1116299
  8. ACS Appl Bio Mater. 2023 Sep 08.
      Understanding the complex interaction between nanoparticles (NPs) and tumors in vivo and how it dominates the delivery efficiency of NPs is critical for the translation of nanomedicine. Herein, we proposed an interpretable XGBoost-SHAP model by integrating the information on NPs physicochemical properties and tumor genomic profile to predict the delivery efficiency. The correlation coefficients were 0.66, 0.75, and 0.54 for the prediction of maximum delivery efficiency, delivery efficiency at 24 and 168 h postinjection for test sets. The analysis of the feature importance revealed that the tumor genomic mutations and their interaction with NPs properties played important roles in the delivery of NPs. The biological pathways of the NP-delivery-related genes were further explored through gene ontology enrichment analysis. Our work provides a pipeline to predict and explain the delivery efficiency of NPs to heterogeneous tumors and highlights the power of simultaneously using omics data and interpretable machine learning algorithms for discovering interactions between NPs and individual tumors, which is important for the development of personalized precision nanomedicine.
    Keywords:  artificial intelligence; drug delivery; genomic mutation; machine learning; nanoparticles
    DOI:  https://doi.org/10.1021/acsabm.3c00527
  9. Int J Mol Sci. 2023 Aug 22. pii: 13048. [Epub ahead of print]24(17):
      Silica nanoparticles with hyaluronic acid (HA) and folic acid (FA) were developed to study dual-ligand targeting of CD44 and folate receptors, respectively, in colon cancer. Characterization of particles with dynamic light scattering showed them to have hydrodynamic diameters of 147-271 nm with moderate polydispersity index (PDI) values. Surface modification of the particles was achieved by simultaneous reaction with HA and FA and results showed that ligand density on the surface increased with increasing concentrations in the reaction mixture. The nanoparticles showed minimal to no cytotoxicity with all formulations showing ≥ 90% cell viability at concentrations up to 100 µg/mL. Based on flow cytometry results, SW480 cell lines were positive for both receptors, the WI38 cell line was positive for CD44 receptor, and Caco2 was positive for the folate receptor. Cellular targeting studies demonstrated the potential of the targeted nanoparticles as promising candidates for delivery of therapeutic agents. The highest cellular targeting was achieved with particles synthesized using folate:surface amine (F:A) ratio of 9 for SW480 and Caco2 cells and at F:A = 0 for WI38 cells. The highest selectivity was achieved at F:A = 9 for both SW480:WI38 and SW480:Caco2 cells. Based on HA conjugation, the highest cellular targeting was achieved at H:A = 0.5-0.75 for SW480 cell, at H:A = 0.75 for WI38 cell and at H:A = 0.5 for Caco2 cells. The highest selectivity was achieved at H:A = 0 for both SW480:WI38 and SW480:Caco2 cells. These results demonstrated that the optimum ligand density on the nanoparticle for targeting is dependent on the levels of biomarker expression on the target cells. Ongoing studies will evaluate the therapeutic efficacy of these targeted nanoparticles using in vitro and in vivo cancer models.
    Keywords:  biomarker expression; colon cancer; drug delivery; dual-ligand targeting; nanomedicine
    DOI:  https://doi.org/10.3390/ijms241713048
  10. J Immunol Methods. 2023 Sep 01. pii: S0022-1759(23)00136-9. [Epub ahead of print] 113554
      Antibodies are essential components of the immune system with a wide range of molecular targets. They have been recognized as modalities for treating several diseases and more than 130 approved antibody-based therapeutics are available for clinical use. However, limitations remain associated with its efficacy, tissue permeability, and safety, especially in cancer treatment. Nanoparticles, particularly those responsive to external stimuli, have shown promise in improving the efficacy of antibody-based therapeutics and tissue-selective delivery. In this study, we developed a reliable and accurate method for quantifying the amount of antibody loaded onto lipid nanoparticles modified with Herceptin® (Trastuzumab), an antibody-based therapeutic used to treat HER2-positive cancers, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. This method proved to be a suitable alternative to commonly used protein quantification techniques, which are limited by lipid interference present in the samples. Furthermore, the amount of Herceptin modified on the liposomes, measured by this method, was confirmed by Herceptin's antibody-dependent cell-mediated cytotoxicity activity. Our results demonstrate the potential of this method as a critical tool for developing tissue-selective antibody delivery systems, leading to improved efficacy and reduced side effects of antibody-based therapeutics.
    Keywords:  Antibody quantification; Fc-binding polypeptide; Liposomes; SDS-PAGE; Silver staining
    DOI:  https://doi.org/10.1016/j.jim.2023.113554