bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2023–06–18
eight papers selected by
the Merkel lab, Ludwig-Maximilians University



  1. ChemMedChem. 2023 Jun 12. e202300097
      Survivin has been shown to be widely expressed in most tumor cells, including lung and breast cancers. Due to limited siRNA delivery, it is more challenging to target survivin using knockdown-based techniques. The cationic lipids deliver small interfering RNA (siRNA) and also display inherent anti-cancer activities; therefore, cationic lipid therapies have become very popular for treating malignant cancers. In the current study, we attempted to synthesize a series of acid-containing cationic lipids, anthranilic acid-containing mef lipids, and indoleacetic acid-containing etodo lipids etc. Our results showed that lipoplexes with siRNA-Etodo: Dotap (ED) and siRNA-Mef: Dotap (MD) exhibited homogeneous particle size and positive zeta potential. Further, biological investigations resulted in enhanced survivin siRNA delivery with high stability, improved transfection efficiency, and anti-cancer activity. Additionally, our findings showed that survivin siRNA lipoplexes (ED and MD) in A549 cells and 4T1 cells exhibited stronger survivin knockdown, enhanced apoptosis, and G2/M phase arrest in both cell types. In vivo results revealed that treatment with survivin complexed lipoplexes significantly reduced tumor growth and tumor weight compared to control. Thus, our novel quaternary amine-based liposome formulations are predicted to open up new possibilities for effective siRNA delivery and anti-cancer activities.
    Keywords:  Cationic Lipid, Gene Therapy, Cancer, Non-Viral Vector, Survivin
    DOI:  https://doi.org/10.1002/cmdc.202300097
  2. Small. 2023 Jun 13. e2302917
      Lipid nanoparticles (LNPs) and ribonucleic acid (RNA) technology are highly versatile tools that can be deployed for diagnostic, prophylactic, and therapeutic applications. In this report, supramolecular chemistry concepts are incorporated into the rational design of a new ionizable lipid, C3-K2-E14, for systemic administration. This lipid incorporates a cone-shaped structure intended to facilitate cell bilayer disruption, and three tertiary amines to improve RNA binding. Additionally, hydroxyl and amide motifs are incorporated to further enhance RNA binding and improve LNP stability. Optimization of messenger RNA (mRNA) and small interfering RNA (siRNA) formulation conditions and lipid ratios produce LNPs with favorable diameter (<150 nm), polydispersity index (<0.15), and RNA encapsulation efficiency (>90%), all of which are preserved after 2 months at 4 or 37 °C storage in ready-to-use liquid form. The lipid and formulated LNPs are well-tolerated in animals and show no deleterious material-induced effects. Furthermore, 1 week after intravenous LNP administration, fluorescent signal from tagged RNA payloads are not detected. To demonstrate the long-term treatment potential for chronic diseases, repeated dosing of C3-K2-E14 LNPs containing siRNA that silences the colony stimulating factor-1 (CSF-1) gene can modulate leukocyte populations in vivo, further highlighting utility.
    Keywords:  CSF-1; gene expression; gene silencing; ionizable lipids; lipid nanoparticles; ribonucleic acids; supramolecular chemistry; thermostability
    DOI:  https://doi.org/10.1002/smll.202302917
  3. Drug Deliv. 2023 Dec;30(1): 2219420
      This study aims to explore the stability of lipo-polymeric niosomes/niosome-based pCMS-EGFP complexes under different storage temperatures (25 °C, 4 °C, and -20 °C). To date, the question of nucleic acid-complex stability is one of the most vital issues in gene delivery applications. The need for stable vaccines during the COVID-19 pandemic has merely highlighted it. In the case of niosomes as gene carriers, the scientific literature still lacks comprehensive stability studies. In this study, the physicochemical features of niosomes/nioplexes in terms of size, surface charge, and polydispersity index (PDI), along with transfection efficiency, and cytotoxicity in NT2 cells were evaluated for 8 weeks. Compared to day 0, the physicochemical features of the niosomes stored at 25 °C and -20 °C changed dramatically in terms of size, zeta potential, and PDI, while remaining in reasonable values when stored at 4 °C. However, niosomes and nioplexes stored at 4 °C and -20 °C showed nearly stable transfection efficiency values, yet an obvious decrease at 25 °C. This article provides a proof of concept into the stability of polymeric cationic niosomes and their nioplexes as promising gene delivery vehicles. Moreover, it highlights the practical possibility of storing nioplexes at 4 °C for up to 2 months, as an alternative to niosomes, for gene delivery purposes.
    Keywords:  Stability; cationic niosome; gene delivery; nioplexes; non-viral vectors
    DOI:  https://doi.org/10.1080/10717544.2023.2219420
  4. Drug Deliv. 2023 Dec;30(1): 2219869
      Messenger RNA (mRNA) has become one of the most potential drugs in recent years. However, efficient and safe delivery of fragile and easily degradable mRNA is a major challenge. Appropriate delivery system (DS) determines the final effect of mRNA. Cationic lipids play a crucial and decisive role in the entire DS, but also cause huge biosafety problems due to the high toxicity. In this study, a new DS for mRNA delivery that combines negatively charged phospholipids was developed in order to neutralize the positive charge and thus increase the safety. Further, the factors affecting mRNA transfection from cell to animal were investigated. The mRNA DS with optimum condition of lipid composition, proportions, structure, and transfection time was synthesized. Adding an appropriate amount of the anionic lipid to liposomes could increase the safety while maintaining the original transfection efficiency. For transporting mRNA in vivo, requirements regarding the mRNA encapsulation and releasing rate should be further considered to optimize DS design and preparation.
    Keywords:  Liposome; lipid nanoparticle; mRNA drug; mRNA transfection; nanocarrier
    DOI:  https://doi.org/10.1080/10717544.2023.2219869
  5. Small Methods. 2023 Jun 14. e2201695
      Poor understanding of intracellular delivery and targeting hinders development of nucleic acid-based therapeutics transported by nanoparticles. Utilizing a siRNA-targeting and small molecule profiling approach with advanced imaging and machine learning biological insights is generated into the mechanism of lipid nanoparticle (MC3-LNP) delivery of mRNA. This workflow is termed Advanced Cellular and Endocytic profiling for Intracellular Delivery (ACE-ID). A cell-based imaging assay and perturbation of 178 targets relevant to intracellular trafficking is used to identify corresponding effects on functional mRNA delivery. Targets improving delivery are analyzed by extracting data-rich phenotypic fingerprints from images using advanced image analysis algorithms. Machine learning is used to determine key features correlating with enhanced delivery, identifying fluid-phase endocytosis as a productive cellular entry route. With this new knowledge, MC3-LNP is re-engineered to target macropinocytosis, and this significantly improves mRNA delivery in vitro and in vivo. The ACE-ID approach can be broadly applicable for optimizing nanomedicine-based intracellular delivery systems and has the potential to accelerate the development of delivery systems for nucleic acid-based therapeutics.
    Keywords:  drug delivery; intracellular trafficking; lipid nanoparticles; machine learning; nucleic acid therapeutics
    DOI:  https://doi.org/10.1002/smtd.202201695
  6. Adv Drug Deliv Rev. 2023 Jun 13. pii: S0169-409X(23)00277-6. [Epub ahead of print] 114962
      Nanotechnology research over the past several decades has been aimed primarily at improving the physicochemical properties of small molecules to produce druggable candidates as well as for tumor targeting of cytotoxic molecules. The recent focus on genomic medicine and the success of lipid nanoparticles for mRNA vaccines have provided additional impetus for the development of nanoparticle drug carriers for nucleic acid delivery, including siRNA, mRNA, DNA, and oligonucleotides, to create therapeutics that can modulate protein deregulation. Bioassays and characterizations, including trafficking assays, stability, and endosomal escape, are key to understanding the properties of these novel nanomedicine formats. We review historical nanomedicine platforms, characterization methodologies, challenges to their clinical translation, and key quality attributes for commercial translation with a view to their developability into a genomic medicine. New nanoparticle systems for immune targeting, as well as in vivo gene editing and in situ CAR therapy, are also highlighted as emerging areas.
    DOI:  https://doi.org/10.1016/j.addr.2023.114962
  7. J Colloid Interface Sci. 2023 May 29. pii: S0021-9797(23)00954-2. [Epub ahead of print]648 287-298
      Gene delivery for non-small-cell lung cancer treatment has been a challenge due to low nucleic acid binding ability, cell-wall barrier, and high cytotoxicity. Cationic polymers, such as the traditional "golden standard" polyethyleneimine (PEI) 25 kDa have emerged as a promising carrier for non-coding RNA delivery. However, the high cytotoxicity associated with its high molecular weight has limited its application in gene delivery. To address this limitation, herein, we designed a novel delivery system using fluorine-modified polyethyleneimine (PEI) 1.8 kDa for microRNA-942-5p-sponges non-coding RNA delivery. Compared to PEI 25 kDa, this novel gene delivery system demonstrated an approximately six-fold enhancement in endocytosis capability and maintain a higher cell viability. In vivo studies also showed good biosafety and anti-tumor effects, attribute to the positive charge of PEI and the hydrophobic and oleophobic properties of the fluorine-modified group. This study provides an effective gene delivery system for non-small-cell lung cancer treatment.
    Keywords:  Fluorine-modified PEI; Gene delivery; NSCLC lung cancer therapy; Polyplexes
    DOI:  https://doi.org/10.1016/j.jcis.2023.05.153
  8. J Control Release. 2023 Jun 11. pii: S0168-3659(23)00369-3. [Epub ahead of print]359 234-243
      Recent clinical applications of mRNA vaccines highlight the critical role of drug delivery, especially when using lipid nanoparticles (LNPs) as the carrier for genetic payloads. However, kinetic and transport mechanisms for locally injected LNPs, such as lymphatic or cellular uptake and drug release, remain poorly understood. Herein, we developed a bottom-up multiphysics computational model to simulate the injection and absorption processes of LNPs in muscular tissues. Our purpose was to seek underlying connections between formulation attributes and local exposure kinetics of LNPs and the delivered drug. We were also interested in modeling the absorption kinetics from the local injection site to the systemic circulation. In our model, the tissue was treated as the homogeneous, poroelastic medium in which vascular and lymphatic vessel densities are considered. Tissue deformation and interstitial fluid flow (modeled using Darcy's Law) were also implemented. Transport of LNPs was described based on diffusion and advection; local disintegration and cellular uptake were also integrated. Sensitivity analyses of LNP and drug properties and tissue attributes were conducted using the simulation model. It was found that intrinsic tissue porosity and lymphatic vessel density affect the local transport kinetics; diffusivity, lymphatic permeability, and intracellular update kinetics also play critical roles. Simulated results were commensurate with experimental observations. This study could shed light on the development of LNP formulations and enable further development of whole-body pharmacokinetic models.
    Keywords:  Lipid nanoparticles; Multiphysics simulation; Pharmacokinetics; Transport and adsorption
    DOI:  https://doi.org/10.1016/j.jconrel.2023.05.048