Int J Pharm. 2023 May 02. pii: S0378-5173(23)00432-5. [Epub ahead of print] 123012
To develop a combinatorial artificial-neural-network design-of-experiment (ANN-DOE) model, the effect of ionizable lipid, an ionizable lipid-to-cholesterol ratio, N/P ratio, flow rate ratio (FRR), and total flow rate (TFR) on the outcome responses of mRNA-LNP vaccine were evaluated using a definitive screening design (DSD) and machine learning (ML) algorithms. Particle size (PS), PDI, zeta potential (ZP), and encapsulation efficiency (EE) of mRNA-LNP were optimized within a defined constraint (PS 40-100 nm, PDI≤0.30, ZP≥(±)0.30 mV, EE≥70%), fed to ML algorithms (XGBoost, bootstrap forest, support vector machines, k-nearest neighbors, generalized regression-Lasso, ANN) and prediction was compared to ANN-DOE model. Increased FRR decreased the PS and increased ZP, while increased TFR increased PDI and ZP. Similarly, DOTAP and DOTMA produced higher ZP and EE. Particularly, a cationic ionizable lipid with an N/P ratio ≥6 provided a higher EE. ANN showed better predictive ability (R2=0.7269-0.9946), while XGBoost demonstrated better RASE (0.2833-2.9817). The ANN-DOE model outperformed both optimized ML models by R2=1.21% and RASE=43.51% (PS prediction), R2=0.23% and RASE=3.47% (PDI prediction), R2=5.73% and RASE=27.95% (ZP prediction), and R2=0.87% and RASE=36.95% (EE prediction), respectively, which demonstrated that ANN-DOE model was superior in predicting the bioprocess compared to independent models.
Keywords: XGBoost; artificial-neural-network design-of-experiment; lipid nanoparticle (LNP); machine learning; messenger RNA; support vector machines