bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2023–04–30
ten papers selected by
the Merkel lab, Ludwig-Maximilians University



  1. Pharmaceutics. 2023 Apr 20. pii: 1289. [Epub ahead of print]15(4):
      Despite the wide variety of available cationic lipid platforms for the delivery of nucleic acids into cells, the optimization of their composition has not lost its relevance. The purpose of this work was to develop multi-component cationic lipid nanoparticles (LNPs) with or without a hydrophobic core from natural lipids in order to evaluate the efficiency of LNPs with the widely used cationic lipoid DOTAP (1,2-dioleoyloxy-3-[trimethylammonium]-propane) and the previously unstudied oleoylcholine (Ol-Ch), as well as the ability of LNPs containing GM3 gangliosides to transfect cells with mRNA and siRNA. LNPs containing cationic lipids, phospholipids and cholesterol, and surfactants were prepared according to a three-stage procedure. The average size of the resulting LNPs was 176 nm (PDI 0.18). LNPs with DOTAP mesylate were more effective than those with Ol-Ch. Core LNPs demonstrated low transfection activity compared with bilayer LNPs. The type of phospholipid in LNPs was significant for the transfection of MDA-MB-231 and SW 620 cancer cells but not HEK 293T cells. LNPs with GM3 gangliosides were the most efficient for the delivery of mRNA to MDA-MB-231 cells and siRNA to SW620 cells. Thus, we developed a new lipid platform for the efficient delivery of RNA of various sizes to mammalian cells.
    Keywords:  GM3 ganglioside; cationic lipids; lipid nanoparticles; mRNA transfection; siRNA transfection
    DOI:  https://doi.org/10.3390/pharmaceutics15041289
  2. Pharmaceutics. 2023 Apr 04. pii: 1141. [Epub ahead of print]15(4):
      Messenger RNA (mRNA)-based therapies are a novel class of therapeutics used in vaccination and protein replacement therapies for monogenic diseases. Previously, we developed a modified ethanol injection (MEI) method for small interfering RNA (siRNA) transfection, in which cationic liposome/siRNA complexes (siRNA lipoplexes) were prepared by mixing a lipid-ethanol solution with a siRNA solution. In this study, we applied the MEI method to prepare mRNA lipoplexes and evaluated the in vitro and in vivo protein expression efficiencies. We selected six cationic lipids and three neutral helper lipids to generate 18 mRNA lipoplexes. These were composed of cationic lipids, neutral helper lipids, and polyethylene glycol-cholesteryl ether (PEG-Chol). Among them, mRNA lipoplexes containing N-hexadecyl-N,N-dimethylhexadecan-1-aminium bromide (DC-1-16) or 11-((1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl) propan-2-yl) amino)-N,N,N-trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12) with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and PEG-Chol exhibited high protein expression in cells. Furthermore, mRNA lipoplexes composed of DC-1-16, DOPE, and PEG-Chol exhibited high protein expression in the lungs and spleen of mice after systemic injection and induced high antigen-specific IgG1 levels upon immunization. These results suggest that the MEI method can potentially increase the efficiency of mRNA transfection, both in vitro and in vivo.
    Keywords:  delivery; lipoplex; mRNA; mRNA vaccine
    DOI:  https://doi.org/10.3390/pharmaceutics15041141
  3. Macromol Biosci. 2023 Apr 23. e2300085
      RNA interference (RNAi) is a promising approach for disease treatments. But the development of safe and effective delivery carriers remains a major challenge. Organic-inorganic hybrid nanoparticles (NPs), with the integration of functions from distinct materials, show great potential in siRNA delivery. In this study, we prepared pH responsive amorphous calcium carbonate NPs (ACC NPs) using flash nanoprecipitation (FNP) and constructed hybrid NPs by coating ACC NPs with polyethyleneimine (PEI) for efficient siRNA delivery. PEI/ACC NPs show robust pH responsiveness and stability as well as effective siRNA loading and protection. Furthermore, siRNA-loaded PEI/ACC NPs demonstrate enhanced cellular uptake and efficient endosomal escape, mediating improved siRNA delivery compared to pure PEI. These findings suggest that PEI/ACC NPs may have great potential in siRNA delivery for RNAi-based therapy. This article is protected by copyright. All rights reserved.
    Keywords:  PEI; amorphous calcium carbonate NPs; gene therapy; hybrid NPs; siRNA delivery
    DOI:  https://doi.org/10.1002/mabi.202300085
  4. Pharmaceutics. 2023 Apr 08. pii: 1190. [Epub ahead of print]15(4):
      The overexpression of the human epidermal growth factor 2 (HER2/neu) oncogene is predictive of adverse breast cancer prognosis. Silencing the HER2/neu overexpression using siRNA may be an effective treatment strategy. Major requirements for siRNA-based therapy are safe, stable, and efficient delivery systems to channel siRNA into target cells. This study assessed the efficacy of cationic lipid-based systems for the delivery of siRNA. Cationic liposomes were formulated with equimolar ratios of the respective cholesteryl cytofectins, 3β-N-(N', N'-dimethylaminopropyl)-carbamoyl cholesterol (Chol-T) or N, N-dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09), with the neutral helper lipid, dioleoylphosphatidylethanolamine (DOPE), with and without a polyethylene glycol stabilizer. All cationic liposomes efficiently bound, compacted, and protected the therapeutic siRNA against nuclease degradation. Liposomes and siRNA lipoplexes were spherical, <200 nm in size, with moderate particle size distributions (PDI < 0.4). The siRNA lipoplexes exhibited minimal dose-dependent cytotoxicity and effective HER2/neu siRNA transfection in the HER2/neu overexpressing SKBR-3 cells. The non-PEGylated Chol-T-siRNA lipoplexes induced the highest HER2/neu silencing at the mRNA (10000-fold decrease) and protein levels (>111.6-fold decrease), surpassing that of commercially available Lipofectamine 3000 (4.1-fold reduction in mRNA expression). These cationic liposomes are suitable carriers of HER2/neu siRNA for gene silencing in breast cancer.
    Keywords:  HER2/neu; breast cancer; cationic liposomes; gene silencing; oncogene; siRNA
    DOI:  https://doi.org/10.3390/pharmaceutics15041190
  5. Adv Sci (Weinh). 2023 Apr 24. e2301929
      Ionizable lipid-based nanoparticles (LNPs) are the most advanced non-viral drug delivery systems for RNA therapeutics and vaccines. However, cell type-specific, extrahepatic mRNA delivery is still a major hurdle, hampering the development of novel therapeutic modalities. Herein, a novel ionizable lipid library is synthesized by modifying hydrophobic tail chains and linkers. Combined with other helper lipids and utilizing a microfluidic mixing approach, stable LNPs are formed. Using Luciferase-mRNA, mCherry mRNA, and Cre mRNA together with a TdTomato animal model, superior lipids forming LNPs for potent cell-type specific mRNA delivery are identified. In vitro assays concluded that combining branched ester tail chains with hydroxylamine linker negatively affects mRNA delivery efficiency. In vivo studies identify Lipid 23 as a liver-trophic, superior mRNA delivery lipid and Lipid 16 as a potent cell type-specific ionizable lipid for the CD11bhi macrophage population without an additional targeting moiety. Finally, in vivo mRNA delivery efficiency and toxicity of these LNPs are compared with SM-102-based LNP (Moderna's LNP formulation) and are shown to be cell-specific compared to SM-102-based LNPs. Overall, this study suggests that a structural combination of tail and linker can drive a novel functionality of LNPs in vivo.
    Keywords:  Combinatorial lipid nanoparticle; Lipid nanoparticle; cell type-specific mRNA delivery; mRNA delivery
    DOI:  https://doi.org/10.1002/advs.202301929
  6. Pharmaceutics. 2023 Apr 03. pii: 1127. [Epub ahead of print]15(4):
      In recent years, there has been an increase in deaths due to infectious diseases, most notably in the context of viral respiratory pathogens. Consequently, the focus has shifted in the search for new therapies, with attention being drawn to the use of nanoparticles in mRNA vaccines for targeted delivery to improve the efficacy of these vaccines. Notably, mRNA vaccine technologies denote as a new era in vaccination due to their rapid, potentially inexpensive, and scalable development. Although they do not pose a risk of integration into the genome and are not produced from infectious elements, they do pose challenges, including exposing naked mRNAs to extracellular endonucleases. Therefore, with the development of nanotechnology, we can further improve their efficacy. Nanoparticles, with their nanometer dimensions, move more freely in the body and, due to their small size, have unique physical and chemical properties. The best candidates for vaccine mRNA transfer are lipid nanoparticles (LNPs), which are stable and biocompatible and contain four components: cationic lipids, ionizable lipids, polyethylene glycols (PEGs), and cholesterol, which are used to facilitate cytoplasmic mRNA delivery. In this article, the components and delivery system of mRNA-LNP vaccines against viral lung infections such as influenza, coronavirus, and respiratory syncytial virus are reviewed. Moreover, we provide a succinct overview of current challenges and potential future directions in the field.
    Keywords:  LNP; delivery systems; mRNA vaccines; nanoparticles; respiratory pathogens; viral infections
    DOI:  https://doi.org/10.3390/pharmaceutics15041127
  7. Mol Pharm. 2023 Apr 24.
      Multifunctionalized Chitosan-based polymeric micelles were used to deliver pVGF to the brain. VGF (non-acronymic) plays significant roles in neurogenesis and learning as well as synaptic and cognitive functions. Therefore, VGF gene therapy could be a better approach in developing effective therapeutics against Alzheimer's disease. Multifunctionalized chitosan polymeric micelles were developed by grafting oleic acid (OA) on the chitosan (CS) skeleton followed by penetratin (PEN) and mannose (MAN) conjugation. The OA-g-CS-PEN-MAN graft polymer formed cationic nanomicelles in an aqueous medium and polyplexed with pVGF. The polymeric micelles were nontoxic and cationic in charge and had an average hydrodynamic diameter of 199.8 ± 15.73 nm. Qualitative in vitro transfection efficiency of OA-g-CS-PEN-MAN/pGFP polyplex was investigated in bEnd.3, primary neurons, and astrocyte cells. In vivo transfection efficiency of OA-g-CS-PEN-MAN/pVGF polyplexes was analyzed in C57BL6/J mice after intranasal administration for 7 days. The VGF expression levels in primary astrocytes and neurons after OA-g-CS-PEN-MAN/pVGF treatment were 2.4 ± 0.24 and 1.49 ± 0.02 pg/μg of protein, respectively. The VGF expression in the OA-g-CS-PEN-MAN/pVGF polyplex-treated animal group was 64.9 ± 12.7 pg/mg of protein, significantly higher (p < 0.01) than that of the unmodified polymeric micelles. The in vivo transfection outcomes revealed that the developed multifunctionalized OA-g-CS-PEN-MAN polymeric micelles could effectively deliver pVGF to the brain, transfect brain cells, and express VGF in the brain after noninvasive intranasal administration.
    Keywords:  Alzheimer disease; brain-targeted gene delivery; cell penetrating peptides; intranasal; mannose; multifunctionalized chitosan; polymeric nanomicelles
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.3c00031
  8. Pharmaceutics. 2023 Apr 21. pii: 1308. [Epub ahead of print]15(4):
      The development of effective anti-cancer therapeutics remains one of the current pharmaceutical challenges. The joint delivery of chemotherapeutic agents and biopharmaceuticals is a cutting-edge approach to creating therapeutic agents of enhanced efficacy. In this study, amphiphilic polypeptide delivery systems capable of loading both hydrophobic drug and small interfering RNA (siRNA) were developed. The synthesis of amphiphilic polypeptides included two steps: (i) synthesis of poly-αl-lysine by ring-opening polymerization and (ii) its post-polymerization modification with hydrophobic l-amino acid and l-arginine/l-histidine. The obtained polymers were used for the preparation of single and dual delivery systems of PTX and short double-stranded nucleic acid. The obtained double component systems were quite compact and had a hydrodynamic diameter in the range of 90-200 nm depending on the polypeptide. The release of PTX from the formulations was studied, and the release profiles were approximated using a number of mathematical dissolution models to establish the most probable release mechanism. A determination of the cytotoxicity in normal (HEK 293T) and cancer (HeLa and A549) cells revealed the higher toxicity of the polypeptide particles to cancer cells. The separate evaluation of the biological activity of PTX and anti-GFP siRNA formulations testified the inhibitory efficiency of PTX formulations based on all polypeptides (IC50 4.5-6.2 ng/mL), while gene silencing was effective only for the Tyr-Arg-containing polypeptide (56-70% GFP knockdown).
    Keywords:  amphiphilic copolymers; drug delivery systems; dual-drug delivery; paclitaxel; polymer particles; polypeptides; siRNA
    DOI:  https://doi.org/10.3390/pharmaceutics15041308
  9. Nano Lett. 2023 Apr 24.
      Messenger RNA (mRNA) therapy has shown tremendous potential for different diseases including cancer. While mRNA has been extensively used in cancer vaccine development as antigen or in cancer immunotherapy as immunomodulatory agent, the combination of mRNA therapy with photodynamic therapy has not been explored in cancer treatment. Herein, we report a reactive oxygen species (ROS)-responsive polymeric nanoparticle (NP) platform for first-in-field codelivery of mRNA and photosensitizer for effective cancer treatment. We developed ROS-responsive oligomer-based polymeric NPs and applied them to test a combination of p53 mRNA and indocyanine green (ICG). The ROS-triggered disassembly of the NPs could promote mRNA translation efficiency, whereby p53 expression induced apoptosis of lung tumor cells. Meanwhile, the released ICG could lead to generation of ROS under 808 nm laser irradiation to induce photodynamic therapy. The NP codelivery of p53 mRNA and ICG demonstrated an effective and safe anti-tumor effect in a lung cancer model.
    Keywords:  Cancer; Photodynamic therapy; ROS-responsive nanoparticles; mRNA delivery; p53
    DOI:  https://doi.org/10.1021/acs.nanolett.2c03784
  10. Biomater Adv. 2023 Apr 21. pii: S2772-9508(23)00153-X. [Epub ahead of print]150 213430
      Lung cancer is often diagnosed at an advanced stage where tumors are usually inoperable and first-line therapies are inefficient and have off-targeted adverse effects, resulting in poor patient survival. Here, we report the development of an inhalable poly lactic-co-glycolic acid polymer-based nanoparticle (PLGA-NP) formulation with a biomimetic Infasurf® lung surfactant (LS) coating, for localized and sustained lung cancer drug delivery. The nanoparticles (188 ± 7 nm) were stable in phosphate buffered saline, serum and Gamble's solution (simulated lung fluid), and demonstrated cytocompatibility up to 1000 μg/mL concentration and dose-dependent uptake by lung cancer cells. The LS coating significantly decreased nanoparticle (NP) uptake by NR8383 alveolar macrophages in vitro compared to uncoated NPs. The coating, however, did not impair NP uptake by A549 lung adenocarcinoma cells. The anti-cancer drug gemcitabine hydrochloride encapsulated in the PLGA core was released in a sustained manner while the paclitaxel loaded in the LS shell demonstrated a rapid or burst release profile over 21 days. The drug-loaded NPs significantly decreased cancer cell survival and colony formation in vitro compared to free drugs and single drug-loaded NPs. In vivo studies confirmed greater retention of LS-coated NPs in the lungs of C57BL/6 WT mice compared to uncoated NPs, at 24 h and 72 h following intranasal administration. The overall results confirm that LS coating is a unique strategy for cloaking polymeric NPs to potentially prevent their rapid lung clearance and facilitate prolonged pulmonary drug delivery.
    Keywords:  Biomimetic; Cancer; Drug delivery; Lung surfactant; Macrophage; Pulmonary
    DOI:  https://doi.org/10.1016/j.bioadv.2023.213430