bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2022‒07‒03
twelve papers selected by
the Merkel lab
Ludwig-Maximilians University


  1. J Vis Exp. 2022 Jun 10.
      In recent years, chemically modified messenger RNA (mRNA) has emerged as a potent nucleic acid molecule for developing a wide range of therapeutic applications, including a novel class of vaccines, protein replacement therapies, and immune therapies. Among delivery vectors, lipid nanoparticles are found to be safer and more effective in delivering RNA molecules (e.g., siRNA, miRNA, mRNA) and a few products are already in clinical use. To demonstrate lipid nanoparticle-mediated mRNA delivery, we present an optimized protocol for the synthesis of functional me1Ψ-UTP modified eGFP mRNA, the preparation of cationic liposomes, the electrostatic complex formation of mRNA with cationic liposomes, and the evaluation of transfection efficiencies in mammalian cells. The results demonstrate that these modifications efficiently improved the stability of mRNA when delivered with cationic liposomes and increased the eGFP mRNA translation efficiency and stability in mammalian cells. This protocol can be used to synthesize the desired mRNA and transfect with cationic liposomes for target gene expression in mammalian cells.
    DOI:  https://doi.org/10.3791/62407
  2. J Mater Chem B. 2022 Jul 01.
      The construction of non-viral gene delivery faces two major challenges: cytotoxicity caused by high cationic charge units and easy degradation by lysosomes. Herein, highly water-dispersible polymeric carbon nitride (PCN) nanosheets were utilized as the core to construct a light-controlled non-cationic gene delivery system with sufficient lysosomal escape ability. In this system, these nanosheets exhibited efficient DNA condensation, outstanding biocompatibility, transfection tracking, light responsiveness and high transfection efficiency. Once PCN-DNA was taken up by the tumor cells, the accumulated ROS generated by photosensitizers (PSs) under light irradiation would destroy the structure of lysosomes, promote the escape of PCN-DNA and increase the efficiency of gene transfection. Simultaneously, the gene transfection process could be tracked in real time through fluorescence imaging technology, which was conducive to investigate the transfection mechanism. In vitro and in vivo experiments further confirmed that PCN nanosheets loaded with the P53 gene were beneficial to the regeneration of the P53 apoptotic pathway, increased tumor sensitivity to PSs, and further induced tumor cell apoptosis. In summary, the highly water-dispersible PCN nanosheets were applied to light-controlled self-escaping gene delivery for the first time, and tumor gene therapy was successfully realized.
    DOI:  https://doi.org/10.1039/d2tb00440b
  3. iScience. 2022 Jul 15. 25(7): 104555
      Plasmid DNA (pDNA) transfection is advantageous for gene therapies requiring larger genetic elements, including "all-in-one" CRISPR/Cas9 plasmids, but is limited by toxicity as well as poor intracellular release and transfection efficiency in immune cell populations. Here, we developed a synthetic non-viral gene delivery platform composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers linked to a cationic dendritic peptide (DP) via a reduceable bond, PEG-b-PPS-ss-DP (PPDP). A library of self-assembling PPDP polymers was synthesized and screened to identify optimal constructs capable of transfecting macrophages with small (pCMV-DsRed, 4.6 kb) and large (pL-CRISPR.EFS.tRFP, 11.7 kb) plasmids. The optimized PPDP construct transfected macrophages, fibroblasts, dendritic cells, and T cells more efficiently and with less toxicity than a commercial Lipo2K reagent, regardless of pDNA size and under standard culture conditions in the presence of serum. The PPDP technology described herein is a stimuli-responsive polymeric nanovector that can be leveraged to meet diverse challenges in gene delivery.
    Keywords:  Biological sciences; Biotechnology; Drug delivery system; Health sciences; Immunology
    DOI:  https://doi.org/10.1016/j.isci.2022.104555
  4. Pharm Dev Technol. 2022 Jun 29. 1-25
      Cationic polymers endowed with a flexible system for condensing DNA, are regarded as effective materials for gene delivery. The synthesis of poly(β-amino esters) (pBAEs) based on 1,4-butanediol diacrylate-ethanolamine monomer (1.2:1 molar ratio) and 1,4-butanediol diacrylate-ethylene diamine (1:2 molar ratio) were carried out and modification with 1800 Da polyethyleneimine (PEI) at different weight ratios (3 and 1) as well as conjugation with pullulan in various weight ratios of (0.0625, 0.125, 0.25, and 1) performed. Gel-retardation assay demonstrated that the synthesized polymers were able to condense DNA at low carrier/plasmid (C/P) ratios. The polyplexes with ratio 3 of PEI (pβ1/PEI3) were restricted in all C/P ratios and the polyplexes of pβ1/PEI3/pull0.125 were condensed at C/P ratios higher than 0.5. The particle size at C/P were approximately about 200 nm with a positive surface charge. The presence of the pullulan in the structure of the synthesized pBAEs could be effective in reducing toxicity of the base polymer. Highest metabolic activity dedicated to C/P2 of pβ2/PEI3/pull0.125 with 80.6 percent viability. Furthermore, the most efficient gene reporter delivery was seen at C/P ratio of 6 in pβ2/PEI3/pull0.125 nanoparticles. Therefore, pullulan grafting could enhance the cellular response of cells in terms of cytotoxicity and transfection efficiency.
    Keywords:  Gene delivery; Poly(β-amino ester); cationic polymers; polyethylene imine; pullulan
    DOI:  https://doi.org/10.1080/10837450.2022.2096069
  5. Small. 2022 Jun 30. e2202303
      Non-viral vectors represent versatile and immunologically safer alternatives for nucleic acid delivery. Nanoneedles and high-aspect ratio nanostructures are unconventional but interesting delivery systems, in which delivery is mediated by surface interactions. Herein, nanoneedles are synergistically combined with polysaccharide-polyplex nanofilms and enhanced transfection efficiency is observed, compared to polyplexes in suspension. Different polyplex-polyelectrolyte nanofilm combinations are assessed and it is found that transfection efficiency is enhanced when using polysaccharide-based polyanions, rather than being only specific for hyaluronic acid, as suggested in earlier studies. Moreover, results show that enhanced transfection is not mediated by interactions with the CD44 receptor, previously hypothesized as a major mechanism mediating enhancement via hyaluronate. In cardiac tissue, nanoneedles are shown to increase the transfection efficiency of nanofilms compared to flat substrates; while in vitro, high transfection efficiencies are observed in nanostructures where cells present large interfacing areas with the substrate. The results of this study demonstrate that surface-mediated transfection using this system is efficient and safe, requiring amounts of nucleic acid with an order of magnitude lower than standard culture transfection. These findings expand the spectrum of possible polyelectrolyte combinations that can be used for the development of suitable non-viral vectors for exploration in further clinical trials.
    Keywords:  gene delivery; nanofilms; nanoneedles; polyplexes; transfection
    DOI:  https://doi.org/10.1002/smll.202202303
  6. ACS Appl Mater Interfaces. 2022 Jun 27.
      Lipid nanoparticles (LNPs) are important delivery systems for RNA-based therapeutics, yet the mechanism of their interaction with endosomal membranes remains unclear. Here, the interactions of nucleic acid-loaded LNPs that contain an ionizable lipid with models of the early and late endosomal membranes are studied, for the first time, using different reflectometry techniques. Novel insight is provided with respect to the subphase pH, the stage of the endosome, and the nature of the nucleic acid cargo. It is found that the insertion of lipids from the LNPs into the model membrane is greatest at pH 6.5 and 5.5, whereas at higher pH, lipid insertion is suppressed with evidence instead for the binding of intact LNPs, demonstrating the importance of the pH in the fusion of LNPs undergoing the endosomal pathway. Furthermore, and independently of the pH, the effect of the early- versus late-stage endosomal models is minimal, suggesting that the increased fluidity and anionic nature of the late endosome has little effect on the extent of LNP interaction. Last, there is greater nucleic acid delivery from LNPs containing mRNA than Poly(A), indicating that the extent of interaction can be tuned according to the nature of the nucleic acid cargo. Such new information on the relative impact of factors influencing nucleic acid delivery by LNP interactions with endosomal membranes is important in the design and tuning of vehicles with improved nucleic acid delivery capacities.
    Keywords:  Brewster angle microscopy (BAM); Langmuir trough; ellipsometry; endosomal escape; lipid nanoparticles
    DOI:  https://doi.org/10.1021/acsami.2c06065
  7. Langmuir. 2022 Jun 27.
      Non-viral gene delivery using polyethylenimine (PEI) has shown tremendous promise as a therapeutic technique. Through the formation of nanoparticles (NPs), PEIs protect genetic material such as DNA from degradation. Escape of the NPs from endosomes and lysosomes is facilitated by PEI's buffering capacity over a wide range of pH. However, little is known about the effects of endosomal acidification on the morphology of the NPs. In this work, large-scale coarse-grained simulations performed to mimic endosomal acidification reveal that NPs undergo a resizing process that is highly dependent on the N/P ratio (ratio of PEI nitrogen to DNA phosphate) at which they are prepared. With a low N/P ratio, NPs further aggregate after endosomal acidification, whereas with a high N/P ratio they dissociate. The mechanisms behind such NP resizing and its consequences on endosomal escape and nuclear trafficking are discussed. Based on the findings, suggestions are made on the PEI architecture that may enhance NP dissociation driven by endosomal acidification.
    DOI:  https://doi.org/10.1021/acs.langmuir.2c00952
  8. Colloids Surf B Biointerfaces. 2022 Jun 20. pii: S0927-7765(22)00334-4. [Epub ahead of print]217 112651
      Gene therapy holds great promise for treatment of gene-associated diseases. However, safe and successful clinical application urgently requires further advancement of constructing efficient delivery systems. Herein, three amphiphilic peptide dendrimers (TTC-L-KRR/KKK/KHH), containing the natural amino acid residues (lysine K, arginine R, and histidine H) and AIE-based photosensitizer (tetraphenylethenethiophene modified cyanoacrylate, TTC) modified with alkyl chain (L), have been designed and prepared for improving therapeutic potency via the combination of gene therapy (GT) and photodynamic therapy (PDT). All three compounds possessed typical aggregation-induced emission (AIE) characteristics and ultralow critical micelle concentrations (CMCs). The liposomes consisting of amphiphilic peptide dendrimers and dioleoylphosphatidylethanolamine (DOPE) can effectively bind DNA into nanoparticles with appropriate sizes, regular morphology and good biocompatibility. Among them, liposomes TTC-L-KKK/DOPE exhibited the highest transfection efficiency up to 5.7-fold as compared with Lipo2000 in HeLa cells. Meanwhile, rapid endocytosis, successful endo/lysosomal escape, gene release and rapid nuclear delivery of DNA revealed the superiority of liposomes TTC-L-KKK/DOPE during gene delivery process. More importantly, efficient reactive oxygen species (ROS) generation by TTC-L-KKK/DOPE led to effective PDT, thus improving therapeutic potency via combining with p53 mediated-gene therapy. Our work brought novel insight and direction for the construction of bio-safe and bio-imaging liposome as the multifunctional nonviral gene vectors for the effective combined gene/photodynamic therapies.
    Keywords:  Amphiphilic peptide dendrimers; Gene therapy; Natural amino acids; Nonviral gene vectors; Photodynamic therapy
    DOI:  https://doi.org/10.1016/j.colsurfb.2022.112651
  9. Artif Cells Nanomed Biotechnol. 2022 Dec;50(1): 198-207
      Recent evidence has implicated microRNA-219 (miR-219) in regulation of gene contributed in glioblastoma (GBM) pathogenesis. This study aimed to prepare miR-219 in chitosan (CS) nanoparticles (NPs), characterize and investigate their efficacy on human GBM cell line (U87 MG). NPs were prepared using ionic gelation method. The influence of process parameters on physicochemical characteristics of NPs was investigated. Apoptotic effect of miR-219 was examined on U87 MG cells. Formulated NPs showed particle size of 109 ± 2.18 nm, with poly dispersity index equal to 0.2 ± 0.05, and zeta potential of +20.5 ± 0.7 mV. Entrapment efficiency of miR-219 in loaded NP has reached 95%. The in vitro release study demonstrated sustained release pattern of miR-219 from CS-NPs. Gel retardation assay has confirmed the integrity of miR-219 after production process. The fabricated NPs reduced the survival of U87 MG cells to 78% after 24 h of post-transfection, and into 67.5% after 48 h. However, fibroblasts were not affected by the NPs, revealing their specificity for GBM cells. Given the tumour suppressing function of miR-219, and advantage of CS-NPs for gene delivery to the central nervous system, the presented NPs have a great potential for treatment of GBM.
    Keywords:  Chitosan; Glioblastoma; Nanoparticles; gene delivery; microRNA; microRNA-219
    DOI:  https://doi.org/10.1080/21691401.2022.2092123
  10. Bioorg Med Chem. 2022 Jun 13. pii: S0968-0896(22)00276-0. [Epub ahead of print]69 116884
      Protein kinase N3 (PKN3), an AGC-family member, is often overexpressed in breast tumor cells. RNAi therapy is a promising approach to inhibit tumor growth by reducing the expression of PKN3. In this report, lipid nanoparticles encapsulated with new shRNA PKN3 (SS-LNP/shPKN3) with redox-responsiveness were developed in order to specifically down-regulate the expression of PKN3 for breast cancer treatment. The SS-LNP/shPKN3 was prepared by microfluidic method using disulfide bonds based ionizable lipid as main component. The as-prepared SS-LNP/shPKN3 lipid nanoparticles were characterized via using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results indicated that the obtained SS-LNP/shPKN3 exhibited uniform particle size and regular spherical morphology. Moreover, glutathione (GSH) triggered release of shPKN3 confirmed the redox-responsiveness of the SS-LNP/shPKN3. Finally, the anti-tumor effect of SS-LNP/shPKN3 was evaluated against MDA-MB-231 cells and derived xenograft tumor bearing mice. It was found that the SS-LNP/shPKN3-2 had the highest PKN3 protein inhibition rate of 60.8% and tumor inhibition rate of 62.3%. Taken together, the SS-LNP/shPKN3 might be a potential therapeutic strategy for breast cancer.
    Keywords:  Breast cancer; Lipid nanoparticles; Protein kinase N3; RNAi therapy
    DOI:  https://doi.org/10.1016/j.bmc.2022.116884
  11. Biomater Sci. 2022 Jun 30.
      The design of non-viral vectors that efficiently deliver genetic materials into cells, in particular to the nucleus, remains a major challenge in gene therapy and vaccine development. To tackle the problems associated with cellular uptake and nuclear targeting, here we introduce a delivery platform based on the self-assembly of an amphiphilic peptide carrying an N-terminal KRKR sequence that functions as a nuclear localization signal (NLS). By means of a single-step self-assembly process, the amphiphilic peptides afford the generation of NLS-functionalized multicompartment micellar nanostructures that can embed various oligonucleotides between their individual compartments. Detailed physicochemical, cellular and ultrastructural analyses demonstrated that integrating an NLS in the hydrophilic domain of the peptide along with tuning its hydrophobic domain led to self-assembled DNA-loaded multicompartment micelles (MCMs) with enhanced cellular uptake and nuclear translocation. We showed that the nuclear targeting ensued via the NLS interaction with the nuclear transport receptors of the karyopherin family. Importantly, we observed that the treatment of MCF-7 cells with NLS-MCMs loaded with anti-BCL2 antisense oligonucleotides resulted in up to 86% knockdown of BCL2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. We envision that this platform can be used to efficiently entrap and deliver diverse genetic payloads to the nucleus and find applications in basic research and biomedicine.
    DOI:  https://doi.org/10.1039/d2bm00826b
  12. Adv Drug Deliv Rev. 2022 Jun 28. pii: S0169-409X(22)00293-9. [Epub ahead of print] 114403
      Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
    Keywords:  Cell Biology; Clathrin coated vesicles; Endocytosis of nanoparticles; critical evaluation; endosome escape; macropinocytosis, caveolae; phagocytosis
    DOI:  https://doi.org/10.1016/j.addr.2022.114403