bims-novged Biomed News
on Non-viral vectors for gene delivery
Issue of 2021–09–26
ten papers selected by
the Merkel lab, Ludwig-Maximilians University and Benjamin Winkeljann, Ludwig-Maximilians University



  1. Technol Cancer Res Treat. 2021 Jan-Dec;20:20 15330338211041453
      Delivery of small-interfering RNA (siRNA) has been of great interest in the past decade for effective gene silencing. To overcome synthetic and regulatory challenges posed by nanoparticle-mediated siRNA delivery, antibody-siRNA conjugate (ARC) platform is emerging as a potential siRNA delivery system suitable for clinical translation. Herein, we have developed a delivery technology based on the ARC platform for stable delivery of siRNA called as Gelatin-Antibody Delivery System (GADS). In GADS, positively charged gelatin acts as a linker between antibody-siRNA and enables the endosomal escape of siRNA for gene silencing postcellular internalization. For proof of concept, we synthesized a scalable GADS conjugate comprising of Cetuximab (CTB), cationized gelatin (cGel) and NSCLC KRASG12C-specific siRNA. CTB was chemically conjugated to cGel through an amide link to form the CTB-cGel complex. Thereafter, siRNA was chemically conjugated to the cGel moiety of the complex through the thioether link to form CTB-cGel-siRNA conjugate. RP-HPLC analysis was used to monitor the reaction while gel retardation assay was used to determine siRNA loading capacity. SPR analysis showed the preservation of ligand binding affinity of antibody conjugates with KD of ∼0.3 nM. Furthermore, cellular internalization study using florescent microscopy revealed receptor-mediated endocytosis. The conjugate targeted EGFR receptor of KRAS mutant NSCLC to specifically knockdown G12C mutation. The oncogene knockdown sensitized the cells toward small molecule inhibitor-Gefitinib causing ∼70% loss in cell viability. Western blot analysis revealed significant downregulation for various RAS downstream proteins postoncogene knockdown. Comparison of the efficiency of GADS vis-à-vis positive siRNA control and CRISPR-Cas9-based knockout of KRAS Exon 2 in the NCI-H23 NSCLC cell line suggests GADS as a potential technology for clinical translation of gene therapy.
    Keywords:  RNAI; cancer therapy; drug delivery; gene; lung cancer
    DOI:  https://doi.org/10.1177/15330338211041453
  2. J Control Release. 2021 Sep 18. pii: S0168-3659(21)00495-8. [Epub ahead of print]
      Currently, messenger RNA (mRNA)-based lipid nanoparticle formulations revolutionize the clinical field. Cationic polymer-based complexes (polyplexes) represent an alternative compound class for mRNA delivery. After establishing branched polyethylenimine with a succinylation degree of 10% (succPEI) as highly effective positive mRNA transfection standard, a diverse library of PEI-like peptides termed sequence-defined oligoaminoamides (OAAs) was screened for mRNA delivery. Notably, sequences, which had previously been identified as potent plasmid DNA (pDNA) or small-interfering RNA (siRNA) carriers, displayed only moderate mRNA transfection activity. A second round of screening combined the cationizable building block succinoyl tetraethylene pentamine and histidines for endosomal buffering, tyrosine tripeptides and various fatty acids for mRNA polyplex stabilization, as well as redox-sensitive units for programmed intracellular release. For the tested OAA carriers, balancing of extracellular stability, endosomal lytic activity, and intracellular release capability was found to be of utmost importance for optimum mRNA transfection efficiency. OAAs with T-shape topology containing two oleic acids as well-stabilizing fatty acids, attached via a dynamic bioreducible building block, displayed superior activity with up to 1000-fold increased transfection efficiency compared to their non-reducible analogs. In the absence of the dynamic linkage, incorporation of shorter less stabilizing fatty acids could only partly compensate for mRNA delivery. Highest GFP expression and the largest fraction of transfected cells (96%) could be detected for the bioreducible OAA with incorporated histidines and a dioleoyl motif, outperforming all other tested carriers as well as the positive control succPEI. The good in vitro performance of the dynamic lead structure was verified in vivo upon intratracheal administration of mRNA complexes in mice.
    Keywords:  Bioreducible; Dynamic delivery; Polyplexes; Redox-sensitive; mRNA
    DOI:  https://doi.org/10.1016/j.jconrel.2021.09.016
  3. Nanoscale. 2021 Sep 20.
      Small interfering RNA (siRNA) can cause specific gene silencing and is considered promising for treating a variety of cancers, including hepatocellular carcinoma (HCC). However, siRNA has many undesirable physicochemical properties that limit its application. Additionally, conventional methods for delivering siRNA are limited in their ability to penetrate solid tumors. In this study, nanodiamonds (NDs) were evaluated as a nanoparticle drug delivery platform for improved siRNA delivery into tumor cells. Our results demonstrated that ND-siRNA complexes could effectively be formed through electrostatic interactions. The ND-siRNA complexes allowed for efficient cellular uptake and endosomal escape that protects siRNA from degradation. Moreover, ND delivery of siRNA was more effective at penetrating tumor spheroids compared to liposomal formulations. This enhanced penetration capacity makes NDs ideal vehicles to deliver siRNA against solid tumor masses as efficient gene knockdown and decreased tumor cell proliferation were observed in tumor spheroids. Evaluation of ND-siRNA complexes within the context of a 3D cancer disease model demonstrates the potential of NDs as a promising gene delivery platform against solid tumors, such as HCC.
    DOI:  https://doi.org/10.1039/d1nr03502a
  4. J Chem Inf Model. 2021 Sep 21.
      A lipid nanoparticle (LNP) formulation is a state-of-the-art delivery system for genetic drugs such as DNA, messenger RNA, and small interfering RNA, which is successfully applied to COVID-19 vaccines and gains tremendous interest in therapeutic applications. Despite its importance, a molecular-level understanding of the LNP structures and dynamics is still lacking, which makes rational LNP design almost impossible. In this work, we present an extension of CHARMM-GUI Membrane Builder to model and simulate all-atom LNPs with various (ionizable) cationic lipids and PEGylated lipids (PEG-lipids). These new lipid types can be mixed with any existing lipid types with or without a biomolecule of interest, and the generated systems can be simulated using various molecular dynamics engines. As a first illustration, we considered model LNP membranes with DLin-KC2-DMA (KC2) or DLin-MC3-DMA (MC3) without PEG-lipids. The results from these model membranes are consistent with those from the two previous studies, albeit with mild accumulation of neutral MC3 in the bilayer center. To demonstrate Membrane Builder's capability of building a realistic LNP patch, we generated KC2- or MC3-containing LNP membranes with high concentrations of cholesterol and ionizable cationic lipids together with 2 mol % PEG-lipids. We observe that PEG-chains are flexible, which can be more preferentially extended laterally in the presence of cationic lipids due to the attractive interactions between their head groups and PEG oxygen. The presence of PEG-lipids also relaxes the lateral packing in LNP membranes, and the area compressibility modulus (KA) of LNP membranes with cationic lipids fit into typical KA of fluid-phase membranes. Interestingly, the interactions between PEG oxygen and the head group of ionizable cationic lipids induce a negative curvature. We hope that this LNP capability in Membrane Builder can be useful to better characterize various LNPs with or without genetic drugs for rational LNP design.
    DOI:  https://doi.org/10.1021/acs.jcim.1c00770
  5. Int J Pharm. 2021 Sep 17. pii: S0378-5173(21)00901-7. [Epub ahead of print] 121095
      Vgf (non-acronymic), a neurotrophin stimulated protein which plays a crucial role in learning, synaptic activity, and neurogenesis, is markedly downregulated in the brain of Alzheimer's disease (AD) patients. However, since vgf is a large polar protein, a safe and efficient gene delivery vector is critical for its delivery across the blood brain barrier (BBB). This research work demonstrates brain-targeted liposomal nanoparticles optimized for delivering plasmid encoding vgf across BBB and transfecting brain cells. Brain targeting was achieved by surface functionalization using glucose transporter-1 targeting ligand (mannose) and brain targeted cell-penetrating peptides (chimeric rabies virus glycoprotein fragment, rabies virus derived peptide, penetratin peptide, or CGNHPHLAKYNGT peptide). The ligands were conjugated to lipid via nucleophilic substitution reaction resulting in more than 75% binding efficiency. The liposomes were formed by film hydration technique demonstrating size less than 200 nm, positive zeta potential (15-20 mV), and polydispersity index less than 0.3. The bifunctionalized liposomes demonstrated ∼3 pg/µg protein vgf transfection across in vitro BBB, and ∼80 pg/mg protein in mice brain which was 1.5-2 fold (p<0.05) higher compared to untreated control. The nanoparticles were also biocompatible in vitro and in vivo, suggesting a safe and efficient gene delivery system to treat AD.
    Keywords:  Alzheimer’s disease; Blood brain barrier; Brain-targeting; Gene therapy; Vgf
    DOI:  https://doi.org/10.1016/j.ijpharm.2021.121095
  6. Mol Pharm. 2021 Sep 24.
      Immunogene therapy provides a new strategy for the treatment of colorectal cancer. Compared to plasmid DNA, mRNA possesses several advantages as a therapeutic nucleic acid material and shows high potential in cancer therapy. Although efforts have been made to conquer the limited efficiency of mRNA delivery, most of the current mRNA vectors possess complex structures or compositions, which introduces additional toxicity and hinders their further clinical application. Hence, it is highly necessary to develop potent mRNA delivery systems with simple structures. Here, we report efficient mRNA delivery using the biodegradable micelle delivery system of DMP (DOTAP-mPEG-PCL). Biodegradable DMP micelles were simply prepared by the self-assembly of cationic lipid DOTAP and the diblock polymer monomethoxy poly(ethylene glycol)-poly(ε-caprolactone). With an average size of only 30 nm, we proved that these single-structured cationic micelles are highly potent in condensing and protecting mRNA molecules, with a delivery efficiency of 60.59% on C26 mouse colon cancer cells. The micelles triggered specific internalization pathways and were fully degraded in vivo. After binding with IL-22BP (interleukin-22 binding protein)-encoding mRNA, a strongly elevated IL-22BP mRNA level was detected in C26 cells. After intraperitoneal and intratumoral injection of the DMP/mIL-22BP complex, strong inhibition effects on C26 colon cancer models were observed, with high therapeutic efficiency and safety when systemically administrated. These data suggest that the DMP micelle is an advanced single-structured mRNA delivery system with high safety.
    Keywords:  IL-22BP; colon cancer; immunogene therapy; mRNA; micelle; single-vector system; systemic delivery
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.1c00461
  7. Int J Pharm. 2021 Sep 21. pii: S0378-5173(21)00934-0. [Epub ahead of print] 121128
      Purified Glycogen (PG) is a highly hyper branched carbohydrate, characterized by high water solubility and very moderate increase in viscosity. The dendrimeric structure of PG, appropriately functionalized, makes it an alternative to current synthetic gene delivery agents. The present study explores the preparation of purified glycogen polycationic derivatives (PGPDs), developed and characterized starting from a single step reaction between PG and N,N-dialkylamino alkyl halides. Subsequently PGPDs were used for the complexation of a model siRNA nucleic acid, a transfection reagent siRNA and a fluorescein-labelled dsRNA oligomer. PGPDs-siRNA complexes were fully characterized by agarose gel electrophoresis and their efficacy was assessed by both confocal microscopy and transfection assays on breast and renal cancer cells. Results proved that PGPDs-siRNA complexes were efficient and not cytotoxic, maintaining their spherical and dendrimeric structure and, particularly, were able to effectively transfect the target cells by releasing the siRNA.
    Keywords:  Cationic Polymers, Dendrimers, siRNA Delivery; Gene Silencing; Glycogen; Nanocarriers; siRNA
    DOI:  https://doi.org/10.1016/j.ijpharm.2021.121128
  8. Bioconjug Chem. 2021 Sep 20.
      The use of nucleic acids to regulate gene expression is a rapidly developing field with immense clinical potential. Nanomaterials are frequently used to deliver nucleic acids into cells as they can overcome the poor cellular uptake and endo/lysosomal degradation of bare nucleic acids. For these nanocarriers to be effective, they must escape endo/lysosomal compartments to deliver their nucleic acid cargo into the cytosol (for ribonucleic acid (RNA)) or nucleus (for deoxyribonucleic acid (DNA)). This process is poorly understood and remains an area of active research toward the goal of developing effective delivery strategies. Fluorescent endo/lysosomal markers are among the most widely employed tools used to evaluate the endosomal escape of nucleic acid nanocarriers. However, the endo/lysosomal labeling method may alter the extent of and route of nanocarrier uptake by cells. The impact of these markers on cellular function and cell-nanocarrier interactions has not been probed in a systematic manner. To investigate this, we compared the effects of several common lysosomal labeling methods, namely, LysoTracker Red (LT Red), transient lysosomal-associated membrane protein 1-mutant green fluorescent protein (LAMP1-mGFP) transfection (Transient GFP), and stable lentiviral LAMP1-mGFP transfection (Stable GFP), on cellular metabolic activity, nanocarrier uptake, nanocarrier/lysosomal label colocalization, and gene silencing potency in U87 glioblastoma and MDA-MB-231 breast cancer cells using polyethyleneimine (PEI)/ribonucleic acid (RNA) polyplexes as a model nanocarrier. In both U87s and MDA-MB-231s, Transient GFP and LT Red labeling reduced metabolic activity relative to untransfected (Parental) cells, while Stable GFP labeling increased metabolic activity. Congruently, flow cytometry indicates Stable GFP cells have greater polyplex uptake than LT Red-labeled cells in both cell lines. Despite these similar trends in uptake, polyplex intracellular trafficking differs in the two cell lines, as confocal imaging revealed greater polyplex/lysosome colocalization in Stable GFP U87 cells than LT Red-labeled U87 cells, while the trend was reversed in MBA-MB-231s. The level of RNA-mediated gene silencing achieved in Parental versus Stable GFP U87 and MDA-MB-231 cells agreed with the observed levels of polyplex/lysosome colocalization, supporting the established concept that endosomal escape is the rate-limiting step for RNA interference. These findings indicate that lysosomal labels can profoundly alter cellular function and cell-nanocarrier interactions, presenting critical new considerations for researchers investigating nanoparticle trafficking.
    DOI:  https://doi.org/10.1021/acs.bioconjchem.1c00405
  9. Adv Mater. 2021 Sep 20. e2103131
      Organelles are specialized compartments, where various proteins reside and play crucial roles to maintain essential cellular structures and functions in mammalian cells. A comprehensive understanding of protein expressions and subsequent localizations at each organelle is of great benefit to the development of organelle-based therapies. Herein, a set of single or dual organelle labeling messenger RNAs (SOLAR or DOLAR) is designed as novel imaging probes, which encode fluorescent proteins with various organelle localization signals. These mRNA probes enable to visualize the protein localizations at different organelles and investigate their trafficking from ribosomal machinery to specific organelles. According to the in vitro results, SOLAR probes show organelle targeting capabilities consistent with the design. Moreover, DOLAR probes with different linkers display distinct targeting properties depending on different organelle localization signals. Additionally, these mRNA probes also exhibit organelle labeling ability in vivo when delivered by lipid nanoparticles (LNPs). Therefore, these mRNA-based probes provide a unique tool to study cell organelles and may facilitate the design of organelle-based therapies.
    Keywords:  lipid nanoparticles; mRNA probes; organelle targeting; protein translocation
    DOI:  https://doi.org/10.1002/adma.202103131
  10. Front Mol Biosci. 2021 ;8 738219
      Background: MicroRNA (abbreviated miRNA)-based treatment holds great promise for application as clinical antitumor therapy, but good carriers for delivery of the miRNA drug are lacking. Exosomes secreted by mesenchymal stem cells (MSCs) have proved to be safe, and exogenously modified exosomes may potentially represent an excellent drug delivery vehicle. Methods: In this study, we designed a delivery nano system using single-stranded variable fragment (scFv)-modified exosomes derived from human cord blood MSCs. Genetic engineering technology was used to obtain anti-Glypican 3 (GPC3) scFv-modified exosomes, which were then loaded with miR-26a mimics through electroporation. Results: Results of electron microscopy and dynamic light scattering indicated that the diameter of the drug-carrying exosomes was about 160 nm. Furthermore, anti-GPC3 scFv-modified exosomes effectively delivered miR-26a to GPC3-positive hepatocellular carcinoma cells, thereby inhibiting cell proliferation and migration by regulating the expression of downstream target genes of miR-26a. The exosomes-based nano system displayed favorable anti-tumor effect in vivo with no obvious side effects. Conclusion: Our data provided a new perspective for the use of exosome delivery systems for miRNA-based antitumor therapy.
    Keywords:  Glypican 3; drug delivery; exosomes; miR-26a; nanosystem
    DOI:  https://doi.org/10.3389/fmolb.2021.738219