bims-nocaut Biomed News
on Non-canonical autophagy
Issue of 2025–07–06
three papers selected by
Quentin Frenger, University of Strasbourg



  1. Front Cell Dev Biol. 2025 ;13 1630652
      
    Keywords:  autophagy; cell signaling; membrane damage; metabolism; oxidative stress; stress granules (SG)
    DOI:  https://doi.org/10.3389/fcell.2025.1630652
  2. Nat Commun. 2025 Jul 01. 16(1): 5616
      Macrophages infiltrate solid tumors and either support survival or induce cancer cell death through phagocytosis or cytotoxicity. To uncover regulators of macrophage cytotoxicity towards cancer cells, we perform two co-culture CRISPR screens using CAR-macrophages targeting different tumor associated antigens. Both identify ATG9A as an important regulator of this cytotoxic activity. In vitro and in vivo, ATG9A depletion in cancer cells sensitizes them to macrophage-mediated killing. Proteomic and lipidomic analyses reveal that ATG9A deficiency impairs the cancer cell response to macrophage-induced plasma membrane damage through defective lysosomal exocytosis, reduced ceramide production, and disrupted caveolar endocytosis. Depleting non-cytotoxic macrophages using CSF1R inhibition while preventing ATG9A-mediated tumor membrane repair enhances the anti-tumor activity of therapeutic antibodies in mice. Thus, macrophage cytotoxicity plays an important role in tumor elimination during antibody or CAR-macrophage treatment, and inhibiting tumor membrane repair via ATG9A, particularly in combination with cytotoxic macrophage enrichment through CSF1R inhibition, improves tumor-targeting macrophage efficacy.
    DOI:  https://doi.org/10.1038/s41467-025-60745-x
  3. Nature. 2025 Jul 02.
      Acute inflammation is an essential response that our bodies use to combat infections1. However, in the absence of infections, chronic inflammation can have a pivotal role in the onset and progression of chronic diseases, such as arthritis, cancer, autoimmune disorders, metabolic-dysfunction-associated steatohepatitis (MASH), and most ageing-associated pathologies2,3. The underlying mechanisms that distinguish chronic inflammation from its acute counterpart remain unclear, posing challenges to the development of targeted therapies for these major diseases. Here we identify a mechanism that separates the two responses: during chronic but not acute inflammation, chromatin remodelling is influenced by nuclear autophagy, in which the WSTF protein of the ISWI chromatin-remodelling complex interacts with the ATG8 autophagy protein family in the nucleus. This interaction leads to WSTF nuclear export and subsequent degradation by autophagosomes and lysosomes in the cytoplasm. Loss of WSTF leads to chromatin opening over inflammatory genes, amplifying inflammation. Cell-penetrating peptides that block the WSTF-ATG8 interaction do not affect acute inflammation but suppress chronic inflammation in senescence as well as in MASH and osteoarthritis in mouse models and patient samples. The ability to specifically target chronic inflammation without blunting acute inflammation offers an approach for treating common chronic inflammatory diseases.
    DOI:  https://doi.org/10.1038/s41586-025-09234-1