bims-nocaut Biomed News
on Non-canonical autophagy
Issue of 2024–06–16
five papers selected by
Quentin Frenger, University of Strasbourg



  1. Autophagy. 2024 Jun 14.
      Thoracic aortic dissection (TAD) is a severe disease, characterized by numerous apoptotic vascular smooth muscle cells (VSMCs). EDIL3/Del-1 is a secreted protein involved in macrophage efferocytosis in acute inflammation. Here, we aimed to investigate whether EDIL3 promoted the internalization and degradation of apoptotic VSMCs during TAD. The levels of EDIL3 were decreased in the serum and aortic tissue from TAD mice. Global edil3 knockout (edil3-/-) mice and edil3-/- bone marrow chimeric mice exhibited a considerable exacerbation in β-aminopropionitrile monofumarate (BAPN)-induced TAD, accompanied with increased apoptotic VSMCs accumulating in the damaged aortic tissue. Two types of phagocytes, RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were used for in vitro efferocytosis assay. edil3-deficient phagocytes exhibited inefficient internalization and degradation of apoptotic VSMCs. Instead, EDIL3 promoted the internalization phase through interacting with phosphatidylserine (PtdSer) on apoptotic VSMCs and binding to the macrophage ITGAV/αv-ITGB3/β3 integrin. In addition, EDIL3 accelerated the degradation phase through activating LC3-associated phagocytosis (LAP). Mechanically, following the engulfment, EDIL3 enhanced the activity of SMPD1/acid sphingomyelinase in the phagosome through blocking ITGAV-ITGB3 integrin, which facilitates phagosomal reactive oxygen species (ROS) production by NAPDH oxidase CYBB/NOX2. Furthermore, exogenous EDIL3 supplementation alleviated BAPN-induced TAD and promoted apoptotic cell clearance. EDIL3 May be a novel factor for the prevention and treatment of TAD.
    Keywords:  Aortic dissection; EDIL3; LC3-associated phagocytosis; apoptotic cell clearance; efferocytosis; inflammation resolution
    DOI:  https://doi.org/10.1080/15548627.2024.2367191
  2. Front Immunol. 2024 ;15 1260439
      Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.
    Keywords:  autophagy; dendritic cells; dengue virus; extracellular vesicles; host-directed antivirals; secretory autophagy; viral evasion; viral transmission
    DOI:  https://doi.org/10.3389/fimmu.2024.1260439
  3. Front Cell Dev Biol. 2024 ;12 1392810
      
    Keywords:  autophagosome formation; extracellular vesicles; membrane fusion; mitochondria; mitophagosome; mitophagy; secretory autophagy
    DOI:  https://doi.org/10.3389/fcell.2024.1392810
  4. Autophagy. 2024 Jun 14.
      Microglia are specialized macrophages responsible for the clearance of dead neurons and pathogens by phagocytosis and degradation. The degradation requires phagosome maturation and acidification provided by the vesicular- or vacuolar-type H+-translocating adenosine triphosphatase (V-ATPase), which is composed of the cytoplasmic V1 domain and the membrane-embedded Vo domain. The V-ATPase a subunit, an integral part of the Vo domain, has four isoforms in mammals. The functions of different isoforms on phagosome maturation in different cells/species remain controversial. Here we show that mutations of both the V-ATPase Atp6v0a1 and Tcirg1b/Atp6v0a3 subunits lead to the accumulation of phagosomes in zebrafish microglia. However, their mechanisms are different. The V-ATPase Atp6v0a1 subunit is mainly distributed in early and late phagosomes. Defects of this subunit lead to a defective transition from early phagosomes to late phagosomes. In contrast, The V-ATPase Tcirg1b/Atp6v0a3 subunit is primarily located on lysosomes and regulates late phagosome-lysosomal fusion. Defective Tcirg1b/Atp6v0a3, but not Atp6v0a1 subunit leads to reduced acidification and impaired macroautophagy/autophagy in microglia. We further showed that ATP6V0A1/a1 and TCIRG1/a3 subunits in mouse macrophages preferentially located in endosomes and lysosomes, respectively. Blocking these subunits disrupted early-to-late endosome transition and endosome-to-lysosome fusion, respectively. Taken together, our results highlight the essential and conserved roles played by different V-ATPase subunits in multiple steps of phagocytosis and endocytosis across various species.
    Keywords:  Autophagy; V-ATPase; microglia; phagosome maturation; zebrafish
    DOI:  https://doi.org/10.1080/15548627.2024.2366748
  5. Cancer Lett. 2024 Jun 11. pii: S0304-3835(24)00418-X. [Epub ahead of print] 217024
      Lysosomes are single membrane bounded group of acidic organelles that can be involved in a process called lysosomal exocytosis which leads to the extracellular release of their content. Lysosomal exocytosis is required for plasma membrane repair or remodeling events such as bone resorption, antigen presentation or mitosis, and for protection against toxic agents such as heavy metals. Recently, it has been showed that to fulfill this protective role, lysosomal exocytosis needs some autophagic proteins, in an autophagy-independent manner. In addition to these crucial physiological roles, lysosomal exocytosis plays a major protumoral role in various cancers. This effect is exerted through tumor microenvironment modifications, including extracellular matrix remodeling, acidosis, oncogenic and profibrogenic signals. This review provides a comprehensive overview of the different elements released in the microenvironment during lysosomal exocytosis, i.e. proteases, exosomes, and protons, and their effects in the context of tumor development and treatment.
    DOI:  https://doi.org/10.1016/j.canlet.2024.217024