Autophagy. 2022 Oct 05.
In mammalian cells, the Golgi apparatus serves as the central hub for membrane trafficking. Notably, the membrane trafficking and Golgi integrity are tightly regulated by reversible post-translational modifications, such as glycosylation, phosphorylation and ubiquitination. Nonetheless, how the Golgi apparatus responses to stress to ensure appropriate membrane assembly and distribution of cargo is poorly understood. The Golgi resident protein ATG9A is the only multi-spanning membrane protein in the ATG family, and has been demonstrated to traffic through the plasma membrane, endosomes, and Golgi to deliver materials for the initiation of macroautophagy/autophagy. Our recent work reveals a noncanonical function of ATG9A for Golgi dynamics and identifies a pathway for sensing Golgi stress via the MARCHF9-ATG9A axis.
Keywords: ATG9A; Golgi dynamics; Golgi stress response; MARCHF9; ubiquitination