Nature. 2026 Feb 04.
Exposure to cytosolic DNA triggers innate immune responses through cyclic GMP-AMP (cGAMP) synthase (cGAS)1,2,3. After binding to DNA, cGAS produces cGAMP as a second messenger that binds to stimulator of interferon genes (STING), a signalling adaptor protein anchored to the endoplasmic reticulum (ER)3-5. STING then traffics from the ER through the Golgi to perinuclear vesicle clusters, which leads to activation of the kinases TBK1 and IKK and subsequent induction of interferons and other cytokines6-9. Here we show that phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2; also known as PI(3,5)P2) is an endogenous ligand of STING that functions together with cGAMP to induce STING activation. Proteomic analyses identified a constitutive interaction between STING and PIKFYVE, an enzyme that produces PtdIns(3,5)P2 in mammalian cells. Deletion of PIKFYVE blocked STING trafficking from the ER and TBK1 activation. In vitro reconstitution uncovered a strong and selective effect of PtdIns(3,5)P2 on STING activation by cGAMP. PtdIns(3,5)P2 bound directly to STING in fluorescence resonance energy transfer assays. Consistently, cryo-electron microscopy revealed that PtdIns(3,5)P2 promotes cGAMP-induced STING oligomerization10, functioning as a molecular glue. Similar to PIKFYVE depletion, mutation of the PtdIns(3,5)P2-binding residues in STING largely blocked its trafficking and downstream signalling. These findings reveal that PtdIns(3,5)P2 is a lipid ligand of STING with essential roles in innate immunity.