bims-nimamd Biomed News
on Neuroimmunity and neuroinflammation in ageing and metabolic disease
Issue of 2024–10–06
fifty-nine papers selected by
Fawaz Alzaïd, Sorbonne Université



  1. Nature. 2024 Oct 02.
      
    Keywords:  Databases; Neuroscience
    DOI:  https://doi.org/10.1038/d41586-024-03050-9
  2. Nat Commun. 2024 Oct 04. 15(1): 8624
      M1 macrophages induce protective immunity against infection, but also contribute to metabolic and inflammatory diseases. Here we show that the E3 ubiquitin ligase, MDM2, promotes the glycolytic and inflammatory activities of M1 macrophage by increasing the production of IL-1β, MCP-1 and nitric oxide (NO). Mechanistically, MDM2 triggers the ubiquitination and degradation of E3 ligase, SPSB2, to stabilize iNOS and increases production of NO, which s-nitrosylates and activates HIF-1α for triggering the glycolytic and pro-inflammatory programs in M1 macrophages. Myeloid-specific haplodeletion of MDM2 in mice not only blunts LPS-induced endotoxemia and NO production, but also alleviates obesity-induced adipose tissue-resident macrophage inflammation. By contrast, MDM2 haplodeletion induces higher mortality, tissue damage and bacterial burden, and also suppresses M1 macrophage response, in the cecal ligation and puncture-induced sepsis mouse model. Our findings thus identify MDM2 as an activator of glycolytic and inflammatory responses in M1 macrophages by connecting the iNOS-NO and HIF-1α pathways.
    DOI:  https://doi.org/10.1038/s41467-024-53006-w
  3. Sci Signal. 2024 Oct;17(856): eado4132
      Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid plaques and cognitive decline, the latter of which is thought to be driven by soluble oligomeric amyloid-β (oAβ). The dysregulation of G protein-gated inwardly rectifying K+ (GIRK; also known as Kir3) channels has been implicated in rodent models of AD. Here, seeking mechanistic insights, we uncovered a sex-dependent facet of GIRK-dependent signaling in AD-related amyloid pathophysiology. Synthetic oAβ1-42 suppressed GIRK-dependent signaling in hippocampal neurons from male mice, but not from female mice. This effect required cellular prion protein, the receptor mGluR5, and production of arachidonic acid by the phospholipase PLA2. Although oAβ suppressed GIRK channel activity only in male hippocampal neurons, intrahippocampal infusion of oAβ or genetic suppression of GIRK channel activity in hippocampal pyramidal neurons impaired performance on a memory test in both male and female mice. Moreover, genetic enhancement of GIRK channel activity in hippocampal pyramidal neurons blocked oAβ-induced cognitive impairment in both male and female mice. In APP/PS1 AD model mice, GIRK-dependent signaling was diminished in hippocampal CA1 pyramidal neurons from only male mice before cognitive deficit was detected. However, enhancing GIRK channel activity rescued cognitive deficits in older APP/PS1 mice of both sexes. Thus, whereas diminished GIRK channel activity contributes to cognitive deficits in male mice with increased oAβ burden, enhancing its activity may have therapeutic potential for both sexes.
    DOI:  https://doi.org/10.1126/scisignal.ado4132
  4. Nat Commun. 2024 Oct 05. 15(1): 8631
      Acquisition of specialized cellular features is controlled by the ordered expression of transcription factors (TFs) along differentiation trajectories. Here, we find a member of the Onecut TF family, ONECUT3, expressed in postmitotic neurons that leave their Ascl1+/Onecut1/2+ proliferative domain in the vertebrate hypothalamus to instruct neuronal differentiation. We combined single-cell RNA-seq and gain-of-function experiments for gene network reconstruction to show that ONECUT3 affects the polarization and morphogenesis of both hypothalamic GABA-derived dopamine and thyrotropin-releasing hormone (TRH)+ glutamate neurons through neuron navigator-2 (NAV2). In vivo, siRNA-mediated knockdown of ONECUT3 in neonatal mice reduced NAV2 mRNA, as well as neurite complexity in Onecut3-containing neurons, while genetic deletion of Onecut3/ceh-48 in C. elegans impaired neurocircuit wiring, and sensory discrimination-based behaviors. Thus, ONECUT3, conserved across neuronal subtypes and many species, underpins the polarization and morphological plasticity of phenotypically distinct neurons that descend from a common pool of Ascl1+ progenitors in the hypothalamus.
    DOI:  https://doi.org/10.1038/s41467-024-52762-z
  5. Science. 2024 Oct 04. 386(6717): 24-25
      Cryptic exons enable delivery of therapies only to sick neurons in a motor neuron disease.
    DOI:  https://doi.org/10.1126/science.ads5951
  6. Nat Commun. 2024 Sep 29. 15(1): 8435
      Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes; however, the underlying molecular mechanism remain vague and debatable. Here we report that SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC-expressing neurons ameliorates diet-induced obesity and its associated complications, partly by regulating the turnover of the long isoform of Leptin receptors (LepRb). Loss of SEL1L in POMC-expressing neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including fatty liver, glucose intolerance, insulin and leptin resistance. Mechanistically, nascent LepRb, both wildtype and disease-associated Cys604Ser variant, are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. In the absence of SEL1L-HRD1 ERAD, LepRb are largely retained in the ER, in an ER stress-independent manner. This study uncovers an important role of SEL1L-HRD1 ERAD in the pathogenesis of central leptin resistance and leptin signaling.
    DOI:  https://doi.org/10.1038/s41467-024-52743-2
  7. Nature. 2024 Oct 02.
      
    Keywords:  Arts; Culture
    DOI:  https://doi.org/10.1038/d41586-024-03066-1
  8. Proc Natl Acad Sci U S A. 2024 Oct 08. 121(41): e2404841121
      Severe and chronic infections, including pneumonia, sepsis, and tuberculosis (TB), induce long-lasting epigenetic changes that are associated with an increase in all-cause postinfectious morbidity and mortality. Oncology studies identified metabolic drivers of the epigenetic landscape, with the tricarboxylic acid (TCA) cycle acting as a central hub. It is unknown if the TCA cycle also regulates epigenetics, specifically DNA methylation, after infection-induced immune tolerance. The following studies demonstrate that lipopolysaccharide and Mycobacterium tuberculosis induce changes in DNA methylation that are mediated by the TCA cycle. Infection-induced DNA hypermethylation is mitigated by inhibitors of cellular metabolism (rapamycin, everolimus, metformin) and the TCA cycle (isocitrate dehydrogenase inhibitors). Conversely, exogenous supplementation with TCA metabolites (succinate and itaconate) induces DNA hypermethylation and immune tolerance. Finally, TB patients who received everolimus have less DNA hypermethylation demonstrating proof of concept that metabolic manipulation can mitigate epigenetic scars.
    Keywords:  DNA methylation; Rheostat; immune tolerance; sepsis; tuberculosis
    DOI:  https://doi.org/10.1073/pnas.2404841121
  9. Nature. 2024 Oct;634(8032): S14-S15
      
    Keywords:  Health care; Medical research; Neurodegeneration; Neuroscience
    DOI:  https://doi.org/10.1038/d41586-024-03049-2
  10. Nature. 2024 Oct 03.
      
    Keywords:  Diseases; Genomics; Therapeutics
    DOI:  https://doi.org/10.1038/d41586-024-03188-6
  11. Nature. 2024 Oct;634(8032): 22-24
      
    Keywords:  Alzheimer's disease; Brain; Medical research
    DOI:  https://doi.org/10.1038/d41586-024-03147-1
  12. Nat Commun. 2024 Sep 28. 15(1): 8422
      Recent single-cell transcriptomes revealed spatiotemporal programmes of liver function on the sublobular scale. However, how sexual dimorphism affected this space-time logic remained poorly understood. We addressed this by performing scRNA-seq in the mouse liver, which revealed that sex, space and time together markedly influence xenobiotic detoxification and lipoprotein metabolism. The very low density lipoprotein receptor (VLDLR) exhibits a pericentral expression pattern, with significantly higher mRNA and protein levels in female mice. Conversely, VLDL assembly is periportally biased, suggesting a sexually dimorphic hepatic cycle of periportal formation and pericentral uptake of VLDL. In humans, VLDLR expression is also pericentral, with higher mRNA and protein levels in premenopausal women compared to similarly aged men. Individuals with low hepatic VLDLR expression show a high prevalence of atherosis in the coronary artery already at an early age and an increased incidence of heart attack.
    DOI:  https://doi.org/10.1038/s41467-024-52751-2
  13. Nature. 2024 Oct;634(8032): S2-S5
      
    Keywords:  Brain; Medical research; Neuroscience; Research data
    DOI:  https://doi.org/10.1038/d41586-024-03044-7
  14. Nat Commun. 2024 Oct 02. 15(1): 8537
      Crosslinking mass spectrometry (XL-MS) has the potential to map the interactome of the cell with high resolution and depth of coverage. However, current in vivo XL-MS methods are hampered by crosslinkers that demonstrate low cell permeability and require long reaction times. Consequently, interactome sampling is not high and long incubation times can distort the cell, bringing into question the validity any protein interactions identified by the method. We address these issues with a fast formaldehyde-based fixation method applied prior to the introduction of secondary crosslinkers. Using human A549 cells and a range of reagents, we show that 4% formaldehyde fixation with membrane permeabilization preserves cellular ultrastructure and simultaneously improves reaction conditions for in situ XL-MS. Protein labeling yields can be increased even for nominally membrane-permeable reagents, and surprisingly, high-concentration formaldehyde does not compete with conventional amine-reactive crosslinking reagents. Prefixation with permeabilization uncouples cellular dynamics from crosslinker dynamics, enhancing control over crosslinking yield and permitting the use of any chemical crosslinker.
    DOI:  https://doi.org/10.1038/s41467-024-52844-y
  15. Nat Commun. 2024 Oct 02. 15(1): 8522
      Tuberculosis, caused by Mycobacterium tuberculosis, remains an enduring global health challenge due to the limited efficacy of existing treatments. Although much research has focused on immune failure, the role of host macrophage biology in controlling the disease remains underappreciated. Here we show, through multi-modal single-cell RNA sequencing in a murine model, that different alveolar macrophage subsets play distinct roles in either advancing or controlling the disease. Initially, alveolar macrophages that are negative for the CD38 marker are the main infected population. As the infection progresses, CD38+ monocyte-derived and tissue-resident alveolar macrophages emerge as significant controllers of bacterial growth. These macrophages display a unique chromatin organization pre-infection, indicative of epigenetic priming for pro-inflammatory responses. Moreover, intranasal BCG immunization increases the numbers of CD38+ macrophages, enhancing their capability to restrict Mycobacterium tuberculosis growth. Our findings highlight the dynamic roles of alveolar macrophages in tuberculosis and open pathways for improved vaccines and therapies.
    DOI:  https://doi.org/10.1038/s41467-024-52846-w
  16. Nat Commun. 2024 Oct 02. 15(1): 8533
      White adipose tissue (WAT) is essential for lipid storage and systemic energy homeostasis. Understanding adipocyte formation and stability is key to developing therapies for obesity and metabolic disorders. Through a high-throughput cDNA screen, we identified PATZ1, a POZ/BTB and AT-Hook Containing Zinc Finger 1 protein, as an important adipogenic transcription factor. PATZ1 is expressed in human and mouse adipocyte precursor cells (APCs) and adipocytes. In cellular models, PATZ1 promotes adipogenesis via protein-protein interactions and DNA binding. PATZ1 ablation in mouse adipocytes and APCs leads to a reduced APC pool, decreased fat mass, and hypertrophied adipocytes. ChIP-Seq and RNA-seq analyses show that PATZ1 supports adipogenesis by interacting with transcriptional machinery at the promoter regions of key early adipogenic factors. Mass-spec results show that PATZ1 associates with GTF2I, with GTF2I modulating PATZ1's function during differentiation. These findings underscore PATZ1's regulatory role in adipocyte differentiation and adiposity, offering insights into adipose tissue development.
    DOI:  https://doi.org/10.1038/s41467-024-52917-y
  17. Nat Commun. 2024 Sep 30. 15(1): 8439
      Chimeric antigen receptor (CAR)-modified natural killer (NK) cells show antileukemic activity against acute myeloid leukemia (AML) in vivo. However, NK cell-mediated tumor killing is often impaired by the interaction between human leukocyte antigen (HLA)-E and the inhibitory receptor, NKG2A. Here, we describe a strategy that overcomes CAR-NK cell inhibition mediated by the HLA-E-NKG2A immune checkpoint. We generate CD33-specific, AML-targeted CAR-NK cells (CAR33) combined with CRISPR/Cas9-based gene disruption of the NKG2A-encoding KLRC1 gene. Using single-cell multi-omics analyses, we identified transcriptional features of activation and maturation in CAR33-KLRC1ko-NK cells, which are preserved following exposure to AML cells. Moreover, CAR33-KLRC1ko-NK cells demonstrate potent antileukemic killing activity against AML cell lines and primary blasts in vitro and in vivo. We thus conclude that NKG2A-deficient CAR-NK cells have the potential to bypass immune suppression in AML.
    DOI:  https://doi.org/10.1038/s41467-024-52388-1
  18. Nature. 2024 Oct 02.
      
    Keywords:  Ageing; Brain; CRISPR-Cas9 genome editing; Stem cells
    DOI:  https://doi.org/10.1038/d41586-024-03177-9
  19. Nature. 2024 Oct 02.
      Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.
    DOI:  https://doi.org/10.1038/s41586-024-07972-2
  20. Cell. 2024 Sep 27. pii: S0092-8674(24)01025-0. [Epub ahead of print]
      The SWR1 chromatin remodeling complex is recruited to +1 nucleosomes downstream of transcription start sites of eukaryotic promoters, where it exchanges histone H2A for the specialized variant H2A.Z. Here, we use cryoelectron microscopy (cryo-EM) to resolve the structural basis of the SWR1 interaction with free DNA, revealing a distinct open conformation of the Swr1 ATPase that enables sliding from accessible DNA to nucleosomes. A complete structural model of the SWR1-nucleosome complex illustrates critical roles for Swc2 and Swc3 subunits in oriented nucleosome engagement by SWR1. Moreover, an extended DNA-binding α helix within the Swc3 subunit enables sensing of nucleosome linker length and is essential for SWR1-promoter-specific recruitment and activity. The previously unresolved N-SWR1 subcomplex forms a flexible extended structure, enabling multivalent recognition of acetylated histone tails by reader domains to further direct SWR1 toward the +1 nucleosome. Altogether, our findings provide a generalizable mechanism for promoter-specific targeting of chromatin and transcription complexes.
    Keywords:  +1 nucleosome; DNA sliding; H2A.Z; SWR1; chromatin remodeler; cryo-EM; histone acetylation; histone exchange; histone reader; promoter
    DOI:  https://doi.org/10.1016/j.cell.2024.09.007
  21. Nature. 2024 Oct 04.
      
    Keywords:  Diseases; Public health; Vaccines
    DOI:  https://doi.org/10.1038/d41586-024-03243-2
  22. Nature. 2024 Oct 03.
      
    Keywords:  Authorship; History; Scientific community
    DOI:  https://doi.org/10.1038/d41586-024-02897-2
  23. Sci Immunol. 2024 Oct 04. 9(100): eadq8843
      Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts)-based single-cell transcriptomics, we identified individual DCs capable of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor-specific T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.
    DOI:  https://doi.org/10.1126/sciimmunol.adq8843
  24. Nat Commun. 2024 Sep 29. 15(1): 8430
      Subarachnoid hemorrhage (SAH) can be associated with neurological deficits and has profound consequences for mortality and morbidity. Cerebral vasospasm (CVS) and delayed cerebral ischemia affect neurological outcomes in SAH patients, but their mechanisms are not fully understood, and effective treatments are limited. Here, we report that urotensin II receptor UT plays a pivotal role in both early events and delayed mechanisms following SAH in male mice. Few days post-SAH, UT expression is triggered by blood or hemoglobin in the leptomeningeal compartment. UT contributes to perimeningeal glia limitans astrocyte reactivity, microvascular alterations and neuroinflammation independent of CNS-associated macrophages (CAMs). Later, CAM-dependent vascular inflammation and subsequent CVS develop, leading to cognitive dysfunction. In an SAH model using humanized UTh+/h+ male mice, we show that post-SAH CVS and behavioral deficits, mediated by UT through Gq/PLC/Ca2+ signaling, are prevented by UT antagonists. These results highlight the potential of targeting UT pathways to reduce early meningeal response and delayed cerebral ischemia in SAH patients.
    DOI:  https://doi.org/10.1038/s41467-024-52654-2
  25. Cell. 2024 Sep 25. pii: S0092-8674(24)01019-5. [Epub ahead of print]
      The capability to spatially explore RNA biology in formalin-fixed paraffin-embedded (FFPE) tissues holds transformative potential for histopathology research. Here, we present pathology-compatible deterministic barcoding in tissue (Patho-DBiT) by combining in situ polyadenylation and computational innovation for spatial whole transcriptome sequencing, tailored to probe the diverse RNA species in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for 5 years. Furthermore, genome-wide single-nucleotide RNA variants can be captured to distinguish malignant subclones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis. Single-cell level Patho-DBiT dissects the spatiotemporal cellular dynamics driving tumor clonal architecture and progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to aid in clinical pathology evaluation.
    Keywords:  RNA biology; clinical FFPE tissue; histopathology; microRNA; single-nucleotide RNA variants; spatial omics; spatiotemporal dynamics; splicing isoforms; whole transcriptome
    DOI:  https://doi.org/10.1016/j.cell.2024.09.001
  26. Nature. 2024 Oct 03.
      
    Keywords:  Careers; Machine learning; Sustainability
    DOI:  https://doi.org/10.1038/d41586-024-02902-8
  27. Nat Commun. 2024 Oct 02. 15(1): 8542
      Thiamine (vitamin B1) functions as an essential coenzyme in cells. Humans and other mammals cannot synthesise this vitamin de novo and thus have to take it up from their diet. Eventually, every cell needs to import thiamine across its plasma membrane, which is mainly mediated by the two specific thiamine transporters SLC19A2 and SLC19A3. Loss of function mutations in either of these transporters lead to detrimental, life-threatening metabolic disorders. SLC19A3 is furthermore a major site of drug interactions. Many medications, including antidepressants, antibiotics and chemotherapeutics are known to inhibit this transporter, with potentially fatal consequences for patients. Despite a thorough functional characterisation over the past two decades, the structural basis of its transport mechanism and drug interactions has remained elusive. Here, we report seven cryo-electron microscopy (cryo-EM) structures of the human thiamine transporter SLC19A3 in complex with various ligands. Conformation-specific nanobodies enable us to capture different states of SLC19A3's transport cycle, revealing the molecular details of thiamine recognition and transport. We identify seven previously unknown drug interactions of SLC19A3 and present structures of the transporter in complex with the inhibitors fedratinib, amprolium and hydroxychloroquine. These data allow us to develop an understanding of the transport mechanism and ligand recognition of SLC19A3.
    DOI:  https://doi.org/10.1038/s41467-024-52872-8
  28. Nat Commun. 2024 Sep 30. 15(1): 8452
      Over the past three decades, functional neuroimaging has amassed abundant evidence of the intricate interplay between brain structure and function. However, the potential anatomical and experimental overlap, independence, granularity, and gaps between functions remain poorly understood. Here, we show the latent structure of the current brain-cognition knowledge and its organisation. Our approach utilises the most comprehensive meta-analytic fMRI database (Neurosynth) to compute a three-dimensional embedding space-morphospace capturing the relationship between brain functions as we currently understand them. The space structure enables us to statistically test the relationship between functions expressed as the degree to which the characteristics of each functional map can be anticipated based on its similarities with others-the predictability index. The morphospace can also predict the activation pattern of new, unseen functions and decode thoughts and inner states during movie watching. The framework defined by the morphospace will spur the investigation of novel functions and guide the exploration of the fabric of human cognition.
    DOI:  https://doi.org/10.1038/s41467-024-52186-9
  29. Sci Immunol. 2024 Oct 04. 9(100): eadt4136
      Patients with autoimmune disease have exhausted antigen-specific T cells that remain capable of B cell support.
    DOI:  https://doi.org/10.1126/sciimmunol.adt4136
  30. Nat Commun. 2024 Oct 01. 15(1): 8512
      Dysregulated DNA replication is a cause and a consequence of aneuploidy in cancer, yet the interplay between copy number alterations (CNAs), replication timing (RT) and cell cycle dynamics remain understudied in aneuploid tumors. We developed a probabilistic method, PERT, for simultaneous inference of cell-specific replication and copy number states from single-cell whole genome sequencing (scWGS) data. We used PERT to investigate clone-specific RT and proliferation dynamics in  >50,000 cells obtained from aneuploid and clonally heterogeneous cell lines, xenografts and primary cancers. We observed bidirectional relationships between RT and CNAs, with CNAs affecting X-inactivation producing the largest RT shifts. Additionally, we found that clone-specific S-phase enrichment positively correlated with ground-truth proliferation rates in genomically stable but not unstable cells. Together, these results demonstrate robust computational identification of S-phase cells from scWGS data, and highlight the importance of RT and cell cycle properties in studying the genomic evolution of aneuploid tumors.
    DOI:  https://doi.org/10.1038/s41467-024-52544-7
  31. Nat Commun. 2024 Oct 04. 15(1): 8628
      The IL-23-Th17 axis is responsible for neutrophilic inflammation in various inflammatory diseases. Here, we discover a potential pathway to inhibit neutrophilic asthma. In our neutrophil-dominant asthma (NDA) model, single-cell RNA-seq analysis identifies a subpopulation of CD39+CD9+ interstitial macrophages (IMs) suppressed by IL-23 in NDA conditions but increased by an IL-23 inhibitor αIL-23p19. Adoptively transferred CD39+CD9+ IMs suppress neutrophil extracellular trap formation (NETosis), a representative phenotype of NDA, and also Th17 cell activation and neutrophilic inflammation. CD39+CD9+ IMs first attach to neutrophils in a CD9-dependent manner, and then remove ATP near neutrophils that contribute to NETosis in a CD39-dependent manner. Transcriptomic data from asthmatic patients finally show decreased CD39+CD9+ IMs in severe asthma than mild/moderate asthma. Our results suggest that CD39+CD9+ IMs function as a potent negative regulator of neutrophilic inflammation by suppressing NETosis in the IL-23-Th17 axis and can thus serve as a potential therapeutic target for IL-23-Th17-mediated neutrophilic asthma.
    DOI:  https://doi.org/10.1038/s41467-024-53038-2
  32. Sci Signal. 2024 Oct;17(856): eadt4125
      Obesity exacerbates inflammation to a greater extent in female patients and mice with multiple sclerosis.
    DOI:  https://doi.org/10.1126/scisignal.adt4125
  33. Science. 2024 Oct 04. 386(6717): 114
      
    DOI:  https://doi.org/10.1126/science.adt4873
  34. Nat Commun. 2024 Oct 01. 15(1): 8496
      Host defenses can have broader ecological roles, but how they shape natural microbiome recruitment is poorly understood. Aliphatic glucosinolates (GLSs) are secondary defense metabolites in Brassicaceae plant leaves. Their genetically defined structure shapes interactions with pests in Arabidopsis thaliana leaves, and here we find that it also shapes bacterial recruitment. In model genotype Col-0, GLSs (mostly 4-methylsulfinylbutyl-GLS) have no clear effect on natural leaf bacterial recruitment. In a genotype from a wild population, however, GLSs (mostly allyl-GLS) enrich specific taxa, mostly Comamonadaceae and Oxalobacteraceae. Consistently, Comamonadaceae are also enriched in wild A. thaliana, and Oxalobacteraceae are enriched from wild plants on allyl-GLS as carbon source, but not on 4-methylsulfinylbutyl-GLS. Recruitment differences between GLS structures most likely arise from bacterial myrosinase specificity. Community recruitment is then defined by metabolic cross-feeding among bacteria. The link of genetically defined metabolites to recruitment could lead to new strategies to shape plant microbiome balance.
    DOI:  https://doi.org/10.1038/s41467-024-52679-7
  35. Nature. 2024 Oct 01.
      
    Keywords:  Computer science; Machine learning; Scientific community
    DOI:  https://doi.org/10.1038/d41586-024-03169-9
  36. Nat Commun. 2024 Oct 01. 15(1): 8481
      Neutrophils are critical mediators of both the initiation and resolution of inflammation after myocardial infarction (MI). Overexuberant neutrophil signaling after MI exacerbates cardiomyocyte apoptosis and cardiac remodeling while neutrophil apoptosis at the injury site promotes macrophage polarization toward a pro-resolving phenotype. Here, we describe a nanoparticle that provides spatiotemporal control over neutrophil fate to both stymie MI pathogenesis and promote healing. Intravenous injection of roscovitine/catalase-loaded poly(lactic-co-glycolic acid) nanoparticles after MI leads to nanoparticle uptake by circulating neutrophils migrating to the infarcted heart. Activated neutrophils at the infarcted heart generate reactive oxygen species, triggering intracellular release of roscovitine, a cyclin-dependent kinase inhibitor, from the nanoparticles, thereby inducing neutrophil apoptosis. Timely apoptosis of activated neutrophils at the infarcted heart limits neutrophil-driven inflammation, promotes macrophage polarization toward a pro-resolving phenotype, and preserves heart function. Modulating neutrophil fate to tune both inflammatory and reparatory processes may be an effective strategy to treat MI.
    DOI:  https://doi.org/10.1038/s41467-024-52812-6
  37. Nat Commun. 2024 Oct 05. 15(1): 8630
      Ryanodine Receptor isoform 3 (RyR3) is a large ion channel found in the endoplasmic reticulum membrane of many different cell types. Within the hippocampal region of the brain, it is found in dendritic spines and regulates synaptic plasticity. It controls myogenic tone in arteries and is upregulated in skeletal muscle in early development. RyR3 has a unique functional profile with a very high sensitivity to activating ligands, enabling high gain in Ca2+-induced Ca2+ release. Here we solve high-resolution cryo-EM structures of RyR3 in non-activating and activating conditions, revealing structural transitions that occur during channel opening. Addition of activating ligands yields only open channels, indicating an intrinsically high open probability under these conditions. RyR3 has reduced binding affinity to the auxiliary protein FKBP12.6 due to several sequence variations in the binding interface. We map disease-associated sequence variants and binding sites for known pharmacological agents. The N-terminal region contains ligand binding sites for a putative chloride anion and ATP, both of which are targeted by sequence variants linked to epileptic encephalopathy.
    DOI:  https://doi.org/10.1038/s41467-024-52998-9
  38. Nat Med. 2024 Sep 30.
      
    Keywords:  Clinical trials; Obesity; Paediatrics
    DOI:  https://doi.org/10.1038/d41591-024-00071-9
  39. Nat Commun. 2024 Oct 01. 15(1): 8508
      Immune surveillance by cytotoxic T cells eliminates tumor cells and cells infected by intracellular pathogens. This process relies on the presentation of antigenic peptides by Major Histocompatibility Complex class I (MHC-I) at the cell surface. The loading of these peptides onto MHC-I depends on the peptide loading complex (PLC) at the endoplasmic reticulum (ER). Here, we uncovered that MHC-I antigen presentation is regulated by ER-associated degradation (ERAD), a protein quality control process essential to clear misfolded and unassembled proteins. An unbiased proteomics screen identified the PLC component Tapasin, essential for peptide loading onto MHC-I, as a substrate of the RNF185/Membralin ERAD complex. Loss of RNF185/Membralin resulted in elevated Tapasin steady state levels and increased MHC-I at the surface of professional antigen presenting cells. We further show that RNF185/Membralin ERAD complex recognizes unassembled Tapasin and limits its incorporation into PLC. These findings establish a novel mechanism controlling antigen presentation and suggest RNF185/Membralin as a potential therapeutic target to modulate immune surveillance.
    DOI:  https://doi.org/10.1038/s41467-024-52772-x
  40. J Clin Invest. 2024 Oct 01. pii: e180251. [Epub ahead of print]134(19):
    Generalized Verrucosis Japanese Consortium
      Infants with biallelic IL7R loss-of-function variants have severe combined immune deficiency (SCID) characterized by the absence of autologous T lymphocytes, but normal counts of circulating B and NK cells (T-B+NK+ SCID). We report 6 adults (aged 22 to 59 years) from 4 kindreds and 3 ancestries (Colombian, Israeli Arab, Japanese) carrying homozygous IL7 loss-of-function variants resulting in combined immunodeficiency (CID). Deep immunophenotyping revealed relatively normal counts and/or proportions of myeloid, B, NK, and innate lymphoid cells. By contrast, the patients had profound T cell lymphopenia, with low proportions of innate-like adaptive mucosal-associated invariant T and invariant NK T cells. They also had low blood counts of T cell receptor (TCR) excision circles, recent thymic emigrant T cells and naive CD4+ T cells, and low overall TCR repertoire diversity, collectively indicating impaired thymic output. The proportions of effector memory CD4+ and CD8+ T cells were high, indicating IL-7-independent homeostatic T cell proliferation in the periphery. Intriguingly, the proportions of other T cell subsets, including TCRγδ+ T cells and some TCRαβ+ T cell subsets (including Th1, Tfh, and Treg) were little affected. Peripheral CD4+ T cells displayed poor proliferation, but normal cytokine production upon stimulation with mitogens in vitro. Thus, inherited IL-7 deficiency impairs T cell development less severely and in a more subset-specific manner than IL-7R deficiency. These findings suggest that another IL-7R-binding cytokine, possibly thymic stromal lymphopoietin, governs an IL-7-independent pathway of human T cell development.
    Keywords:  Cytokines; Genetic diseases; Genetics; Immunology; T cell development
    DOI:  https://doi.org/10.1172/JCI180251
  41. Nat Commun. 2024 Oct 01. 15(1): 8477
      Seminal fluid is rich in sugars, but their role beyond supporting sperm motility is unknown. In this study, we found Drosophila melanogaster males transfer a substantial amount of a phospho-galactoside to females during mating, but only half as much when undernourished. This seminal substance, which we named venerose, induces an increase in germline stem cells (GSCs) and promotes sperm storage in females, especially undernourished ones. Venerose enters the hemolymph and directly activates nutrient-sensing Dh44+ neurons in the brain. Food deprivation directs the nutrient-sensing neurons to secrete more of the neuropeptide Dh44 in response to infused venerose. The secreted Dh44 then enhances the local niche signal, stimulating GSC proliferation. It also extends the retention of ejaculate by females, resulting in greater venerose absorption and increased sperm storage. In this study, we uncovered the role of a sugar-like seminal substance produced by males that coordinates reproductive responses to nutritional challenges in females.
    DOI:  https://doi.org/10.1038/s41467-024-52807-3
  42. J Exp Med. 2024 Oct 07. pii: e20240951. [Epub ahead of print]221(10):
      A new study by Folkert et al. (https://doi.org/10.1084/jem.20230420) defines an "iron-rich" subset of tumor-associated macrophages (iTAMs). The metabolism of heme leads to the degradation of the transcriptional repressor Bach1 and shapes the transcriptional profile of iTAMs. The endothelin receptor B in iTAMs signals tumor-supportive functions.
    DOI:  https://doi.org/10.1084/jem.20240951
  43. Nat Commun. 2024 Oct 02. 15(1): 8519
      The fusion of autophagosomes and lysosomes is essential for the prevention of nonalcoholic fatty liver disease (NAFLD). Here, we generate a hepatocyte-specific CHIP knockout (H-KO) mouse model that develops NAFLD more rapidly in response to a high-fat diet (HFD) or high-fat, high-fructose diet (HFHFD). The accumulation of P62 and LC3 in the livers of H-KO mice and CHIP-depleted cells indicates the inhibition of autophagosome-lysosome fusion. AAV8-mediated overexpression of CHIP in the murine liver slows the progression of NAFLD induced by HFD or HFHFD feeding. Mechanistically, CHIP induced K63- and K27-linked polyubiquitination at the lysine 198 residue of STX17, resulting in increased STX17-SNAP29-VAMP8 complex formation. The STX17 K198R mutant was not ubiquitinated by CHIP; it interfered with its interaction with VAMP8, rendering STX17 incapable of inhibiting steatosis development in mice. These results indicate that a signaling regulatory mechanism involving CHIP-mediated non-degradative ubiquitination of STX17 is necessary for autophagosome-lysosome fusion.
    DOI:  https://doi.org/10.1038/s41467-024-53002-0