bims-nimamd Biomed News
on Neuroimmunity and neuroinflammation in ageing and metabolic disease
Issue of 2023–04–09
43 papers selected by
Fawaz Alzaïd, Sorbonne Université



  1. Science. 2023 Apr 07. 380(6640): 106
      
    DOI:  https://doi.org/10.1126/science.adi0666
  2. Science. 2023 Apr 07. 380(6640): 47
      Journey through basic biology reveals a way to treat chromosomally unstable cancers.
    DOI:  https://doi.org/10.1126/science.adg7671
  3. J Exp Med. 2023 Jul 03. pii: e20221929. [Epub ahead of print]220(7):
      The meningeal lymphatic network enables the drainage of cerebrospinal fluid (CSF) and facilitates the removal of central nervous system (CNS) waste. During aging and in Alzheimer's disease, impaired meningeal lymphatic drainage promotes the buildup of toxic misfolded proteins in the CNS. Reversing this age-related dysfunction represents a promising strategy to augment CNS waste clearance; however, the mechanisms underlying this decline remain elusive. Here, we demonstrate that age-related alterations in meningeal immunity underlie this lymphatic impairment. Single-cell RNA sequencing of meningeal lymphatic endothelial cells from aged mice revealed their response to IFNγ, which was increased in the aged meninges due to T cell accumulation. Chronic elevation of meningeal IFNγ in young mice via AAV-mediated overexpression attenuated CSF drainage-comparable to the deficits observed in aged mice. Therapeutically, IFNγ neutralization alleviated age-related impairments in meningeal lymphatic function. These data suggest manipulation of meningeal immunity as a viable approach to normalize CSF drainage and alleviate the neurological deficits associated with impaired waste removal.
    DOI:  https://doi.org/10.1084/jem.20221929
  4. Mol Cell. 2023 Apr 01. pii: S1097-2765(23)00203-4. [Epub ahead of print]
      The mammalian SWI/SNF (mSWI/SNF or BAF) family of chromatin remodeling complexes play critical roles in regulating DNA accessibility and gene expression. The three final-form subcomplexes-cBAF, PBAF, and ncBAF-are distinct in biochemical componentry, chromatin targeting, and roles in disease; however, the contributions of their constituent subunits to gene expression remain incompletely defined. Here, we performed Perturb-seq-based CRISPR-Cas9 knockout screens targeting mSWI/SNF subunits individually and in select combinations, followed by single-cell RNA-seq and SHARE-seq. We uncovered complex-, module-, and subunit-specific contributions to distinct regulatory networks and defined paralog subunit relationships and shifted subcomplex functions upon perturbations. Synergistic, intra-complex genetic interactions between subunits reveal functional redundancy and modularity. Importantly, single-cell subunit perturbation signatures mapped across bulk primary human tumor expression profiles both mirror and predict cBAF loss-of-function status in cancer. Our findings highlight the utility of Perturb-seq to dissect disease-relevant gene regulatory impacts of heterogeneous, multi-component master regulatory complexes.
    Keywords:  ATAC-seq; ATP-dependent chromatin remodeling; BAF complex; Perturb-seq; SHARE-Seq; cancer; chromatin accessibility; gene expression; mammalian SWI/SNF complexes; pediatric cancer; rare diseases
    DOI:  https://doi.org/10.1016/j.molcel.2023.03.013
  5. Sci Adv. 2023 04 05. 9(14): eadg0731
      Women experience osteoporosis at higher rates than men. Aside from hormones, the mechanisms driving sex-dependent bone mass regulation are not well understood. Here, we demonstrate that the X-linked H3K4me2/3 demethylase KDM5C regulates sex-specific bone mass. Loss of KDM5C in hematopoietic stem cells or bone marrow monocytes increases bone mass in female but not male mice. Mechanistically, loss of KDM5C impairs the bioenergetic metabolism, resulting in impaired osteoclastogenesis. Treatment with the KDM5 inhibitor reduces osteoclastogenesis and energy metabolism of both female mice and human monocytes. Our report details a sex-dependent mechanism for bone homeostasis, connecting epigenetic regulation to osteoclast metabolism and positions KDM5C as a potential target for future treatment of osteoporosis in women.
    DOI:  https://doi.org/10.1126/sciadv.adg0731
  6. Nat Immunol. 2023 Apr 03.
      Obesity-related metabolic organ inflammation contributes to cardiometabolic disorders. In obese individuals, changes in lipid fluxes and storage elicit immune responses in the adipose tissue (AT), including expansion of immune cell populations and qualitative changes in the function of these cells. Although traditional models of metabolic inflammation posit that these immune responses disturb metabolic organ function, studies now suggest that immune cells, especially AT macrophages (ATMs), also have important adaptive functions in lipid homeostasis in states in which the metabolic function of adipocytes is taxed. Adverse consequences of AT metabolic inflammation might result from failure to maintain local lipid homeostasis and long-term effects on immune cells beyond the AT. Here we review the complex function of ATMs in AT homeostasis and metabolic inflammation. Additionally, we hypothesize that trained immunity, which involves long-term functional adaptations of myeloid cells and their bone marrow progenitors, can provide a model by which metabolic perturbations trigger chronic systemic inflammation.
    DOI:  https://doi.org/10.1038/s41590-023-01479-0
  7. J Immunol. 2023 Apr 15. 210(8): 1013
      
    DOI:  https://doi.org/10.4049/jimmunol.2390005
  8. Nat Commun. 2023 Apr 01. 14(1): 1829
      Parabacteroides distasonis (P. distasonis) plays an important role in human health, including diabetes, colorectal cancer and inflammatory bowel disease. Here, we show that P. distasonis is decreased in patients with hepatic fibrosis, and that administration of P. distasonis to male mice improves thioacetamide (TAA)- and methionine and choline-deficient (MCD) diet-induced hepatic fibrosis. Administration of P. distasonis also leads to increased bile salt hydrolase (BSH) activity, inhibition of intestinal farnesoid X receptor (FXR) signaling and decreased taurochenodeoxycholic acid (TCDCA) levels in liver. TCDCA produces toxicity in mouse primary hepatic cells (HSCs) and induces mitochondrial permeability transition (MPT) and Caspase-11 pyroptosis in mice. The decrease of TCDCA by P. distasonis improves activation of HSCs through decreasing MPT-Caspase-11 pyroptosis in hepatocytes. Celastrol, a compound reported to increase P. distasonis abundance in mice, promotes the growth of P. distasonis with concomitant enhancement of bile acid excretion and improvement of hepatic fibrosis in male mice. These data suggest that supplementation of P. distasonis may be a promising means to ameliorate hepatic fibrosis.
    DOI:  https://doi.org/10.1038/s41467-023-37459-z
  9. Nat Commun. 2023 Apr 07. 14(1): 1942
      Bombyx Vasa (BmVasa) assembles non-membranous organelle, nuage or Vasa bodies, in germ cells, known as the center for Siwi-dependent transposon silencing and concomitant Ago3-piRISC biogenesis. However, details of the body assembly remain unclear. Here, we show that the N-terminal intrinsically disordered region (N-IDR) and RNA helicase domain of BmVasa are responsible for self-association and RNA binding, respectively, but N-IDR is also required for full RNA-binding activity. Both domains are essential for Vasa body assembly in vivo and droplet formation in vitro via phase separation. FAST-iCLIP reveals that BmVasa preferentially binds transposon mRNAs. Loss of Siwi function derepresses transposons but has marginal effects on BmVasa-RNA binding. This study shows that BmVasa assembles nuage by phase separation via its ability to self-associate and bind newly exported transposon mRNAs. This unique property of BmVasa allows transposon mRNAs to be sequestered and enriched in nuage, resulting in effective Siwi-dependent transposon repression and Ago3-piRISC biogenesis.
    DOI:  https://doi.org/10.1038/s41467-023-37634-2
  10. Nat Genet. 2023 Apr 06.
      Chromatin features are widely used for genome-scale mapping of enhancers. However, discriminating active enhancers from other cis-regulatory elements, predicting enhancer strength and identifying their target genes is challenging. Here we establish histone H2B N-terminus multisite lysine acetylation (H2BNTac) as a signature of active enhancers. H2BNTac prominently marks candidate active enhancers and a subset of promoters and discriminates them from ubiquitously active promoters. Two mechanisms underlie the distinct H2BNTac specificity: (1) unlike H3K27ac, H2BNTac is specifically catalyzed by CBP/p300; (2) H2A-H2B, but not H3-H4, are rapidly exchanged through transcription-induced nucleosome remodeling. H2BNTac-positive candidate enhancers show a high validation rate in orthogonal enhancer activity assays and a vast majority of endogenously active enhancers are marked by H2BNTac and H3K27ac. Notably, H2BNTac intensity predicts enhancer strength and outperforms current state-of-the-art models in predicting CBP/p300 target genes. These findings have broad implications for generating fine-grained enhancer maps and modeling CBP/p300-dependent gene regulation.
    DOI:  https://doi.org/10.1038/s41588-023-01348-4
  11. Nat Commun. 2023 Apr 03. 14(1): 1839
      Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genome editing, we generate a mouse model that is deficient of all monocyte chemoattractant proteins. Using this strain, we effectively abolish monocyte infiltration in genetically engineered murine models of de novo glioblastoma (GBM) and hepatocellular carcinoma (HCC), which show differential enrichment patterns for monocytes and neutrophils. Eliminating monocyte chemoattraction in monocyte enriched PDGFB-driven GBM invokes a compensatory neutrophil influx, while having no effect on Nf1-silenced GBM model. Single-cell RNA sequencing reveals that intratumoral neutrophils promote proneural-to-mesenchymal transition and increase hypoxia in PDGFB-driven GBM. We further demonstrate neutrophil-derived TNF-a directly drives mesenchymal transition in PDGFB-driven primary GBM cells. Genetic or pharmacological inhibiting neutrophils in HCC or monocyte-deficient PDGFB-driven and Nf1-silenced GBM models extend the survival of tumor-bearing mice. Our findings demonstrate tumor-type and genotype dependent infiltration and function of monocytes and neutrophils and highlight the importance of targeting them simultaneously for cancer treatments.
    DOI:  https://doi.org/10.1038/s41467-023-37361-8
  12. Nat Cell Biol. 2023 Apr 03.
      Metabolism is intertwined with various cellular processes, including controlling cell fate, influencing tumorigenesis, participating in stress responses and more. Metabolism is a complex, interdependent network, and local perturbations can have indirect effects that are pervasive across the metabolic network. Current analytical and technical limitations have long created a bottleneck in metabolic data interpretation. To address these shortcomings, we developed Metaboverse, a user-friendly tool to facilitate data exploration and hypothesis generation. Here we introduce algorithms that leverage the metabolic network to extract complex reaction patterns from data. To minimize the impact of missing measurements within the network, we introduce methods that enable pattern recognition across multiple reactions. Using Metaboverse, we identify a previously undescribed metabolite signature that correlated with survival outcomes in early stage lung adenocarcinoma patients. Using a yeast model, we identify metabolic responses suggesting an adaptive role of citrate homeostasis during mitochondrial dysfunction facilitated by the citrate transporter, Ctp1. We demonstrate that Metaboverse augments the user's ability to extract meaningful patterns from multi-omics datasets to develop actionable hypotheses.
    DOI:  https://doi.org/10.1038/s41556-023-01117-9
  13. J Clin Invest. 2023 Apr 04. pii: e162951. [Epub ahead of print]
      Programmed death ligand 1 (PD-L1) is an immune checkpoint protein frequently expressed in human cancers, which contributes to immune evasion through its binding to PD-1 on activated T cells. Unveiling the mechanisms underlying PD-L1 expression is essential for understanding the impacts of immunosuppressive microenvironment, and also crucial for the purpose of re-boosting anti-tumour immunity. However, how PD-L1 is regulated, particularly at translational levels, remains largely unknown. Here, we discovered that a lncRNA, HIF-1α inhibitor at translation level (HITT), was transactivated by E2F1 under interferon-γ stimulation. It bound and co-ordinated with Regulator of G Protein Signalling 2 (RGS2) in binding to the 5'-untranslated region (UTR) of PD-L1, resulting in reduced PD-L1 translation. HITT expression enhanced T cell-mediated cytotoxicity both in vitro and in vivo in a PD-L1 dependent manner. The clinical correlation between HITT/PD-L1, RGS2/PD-L1 expression was also detected in breast cancer tissues. Together, these findings demonstrate the role of HITT in antitumour T cell immunity, highlighting activation of HITT as a potential therapeutic strategy to enhance cancer immunotherapy.
    Keywords:  Cancer immunotherapy; Immunology; Oncology
    DOI:  https://doi.org/10.1172/JCI162951
  14. Nat Commun. 2023 Apr 03. 14(1): 1864
      Computational cell type identification is a fundamental step in single-cell omics data analysis. Supervised celltyping methods have gained increasing popularity in single-cell RNA-seq data because of the superior performance and the availability of high-quality reference datasets. Recent technological advances in profiling chromatin accessibility at single-cell resolution (scATAC-seq) have brought new insights to the understanding of epigenetic heterogeneity. With continuous accumulation of scATAC-seq datasets, supervised celltyping method specifically designed for scATAC-seq is in urgent need. Here we develop Cellcano, a computational method based on a two-round supervised learning algorithm to identify cell types from scATAC-seq data. The method alleviates the distributional shift between reference and target data and improves the prediction performance. After systematically benchmarking Cellcano on 50 well-designed celltyping tasks from various datasets, we show that Cellcano is accurate, robust, and computationally efficient. Cellcano is well-documented and freely available at https://marvinquiet.github.io/Cellcano/ .
    DOI:  https://doi.org/10.1038/s41467-023-37439-3
  15. Hepatology. 2023 Apr 05.
       BACKGROUND AND AIMS: TGF-β induces multiple structural and functional changes in quiescent hepatic stellate cells (HSC) including an increase in proliferation, mitochondrial mass, and matrix deposition. HSC trans-differentiation requires significant bioenergetic capacity and it is not known how TGF-β mediated transcriptional up-regulation is coordinated with the bioenergetic capacity of HSC.
    APPROACH AND RESULTS: Mitochondria are key bioenergetic organelles and here we report that TGF-β induces release of mitochondrial DNA (mtDNA) from healthy HSC via voltage-dependent anions channels (VDACs), with the formation of a mtDNA-CAP on the external mitochondrial membrane. This stimulates organization of cytosolic cGAS onto the mtDNA-CAP, and subsequent activation of the cGAS-STING-IRF3 pathway. TGF-β is unable to induce conversion of HSC from a quiescent to a trans-differentiated phenotype in the absence of mtDNA, VDAC or STING. Trans-differentiation by TGF-β is blocked by a STING inhibitor which also reduces liver fibrosis prophylactically and therapeutically.
    CONCLUSION: We have identified a pathway which requires the presence of functional mitochondria for TGF-β to mediate HSC transcriptional regulation and transdifferentiation, and therefore provides a key link between bioenergetic capacity of HSC and signals for transcriptional up-regulation of genes of anabolic pathways.
    DOI:  https://doi.org/10.1097/HEP.0000000000000388
  16. Science. 2023 Apr 07. 380(6640): eadc9498
      Despite the vast diversity of the antibody repertoire, infected individuals often mount antibody responses to precisely the same epitopes within antigens. The immunological mechanisms underpinning this phenomenon remain unknown. By mapping 376 immunodominant "public epitopes" at high resolution and characterizing several of their cognate antibodies, we concluded that germline-encoded sequences in antibodies drive recurrent recognition. Systematic analysis of antibody-antigen structures uncovered 18 human and 21 partially overlapping mouse germline-encoded amino acid-binding (GRAB) motifs within heavy and light V gene segments that in case studies proved critical for public epitope recognition. GRAB motifs represent a fundamental component of the immune system's architecture that promotes recognition of pathogens and leads to species-specific public antibody responses that can exert selective pressure on pathogens.
    DOI:  https://doi.org/10.1126/science.adc9498
  17. Nat Genet. 2023 Apr 06.
      Transcriptional regulation exhibits extensive robustness, but human genetics indicates sensitivity to transcription factor (TF) dosage. Reconciling such observations requires quantitative studies of TF dosage effects at trait-relevant ranges, largely lacking so far. TFs play central roles in both normal-range and disease-associated variation in craniofacial morphology; we therefore developed an approach to precisely modulate TF levels in human facial progenitor cells and applied it to SOX9, a TF associated with craniofacial variation and disease (Pierre Robin sequence (PRS)). Most SOX9-dependent regulatory elements (REs) are buffered against small decreases in SOX9 dosage, but REs directly and primarily regulated by SOX9 show heightened sensitivity to SOX9 dosage; these RE responses partially predict gene expression responses. Sensitive REs and genes preferentially affect functional chondrogenesis and PRS-like craniofacial shape variation. We propose that such REs and genes underlie the sensitivity of specific phenotypes to TF dosage, while buffering of other genes leads to robust, nonlinear dosage-to-phenotype relationships.
    DOI:  https://doi.org/10.1038/s41588-023-01366-2
  18. Cell Death Dis. 2023 Apr 05. 14(4): 238
      Many anticancer agents induce apoptosis, mitotic catastrophe or cellular senescence. Here, we report the functional characterization of an experimental inducer of tumor necrosis factor (TNF)-independent necrosis, necrocide-1 (NC1). NC1 (but not its stereoisomer) killed a panel of human cancer cells (but not normal cells) at nanomolar concentrations and with a non-apoptotic, necrotic morphotype, both in vitro and in vivo. NC1-induced killing was not inhibited by caspase blockers, anti-apoptotic BCL2 overexpression or TNFα neutralization, suggesting that NC1 elicits a bona fide necrotic pathway. However, pharmacological or genetic inhibition of necroptosis, pyroptosis and ferroptosis failed to block NC1-mediated cell death. Instead, NC1 elicited reactive oxygen species (ROS) production by mitochondria, and elimination of mitochondrial DNA, quenching of mitochondrial ROS, as well as blockade of mitochondrial permeability transition with cyclosporine A, interfered with NC1-induced cell death. NC1 induced hallmarks of immunogenic cell death incurring calreticulin (CALR) exposure, ATP secretion and high mobility group box 1 (HMGB1) release. Taken together, these data identify a previously uncharacterized signaling cascade leading to an immunogenic variant of mitochondrion-regulated necrosis, supporting the notion that eliciting regulated necrosis may constitute a valid approach for anticancer therapy.
    DOI:  https://doi.org/10.1038/s41419-023-05740-0
  19. Mol Cell. 2023 Apr 06. pii: S1097-2765(23)00167-3. [Epub ahead of print]83(7): 1180-1196.e8
      Proper defense against microbial infection depends on the controlled activation of the immune system. This is particularly important for the RIG-I-like receptors (RLRs), which recognize viral dsRNA and initiate antiviral innate immune responses with the potential of triggering systemic inflammation and immunopathology. Here, we show that stress granules (SGs), molecular condensates that form in response to various stresses including viral dsRNA, play key roles in the controlled activation of RLR signaling. Without the SG nucleators G3BP1/2 and UBAP2L, dsRNA triggers excessive inflammation and immune-mediated apoptosis. In addition to exogenous dsRNA, host-derived dsRNA generated in response to ADAR1 deficiency is also controlled by SG biology. Intriguingly, SGs can function beyond immune control by suppressing viral replication independently of the RLR pathway. These observations thus highlight the multi-functional nature of SGs as cellular "shock absorbers" that converge on protecting cell homeostasis by dampening both toxic immune response and viral replication.
    Keywords:  ADAR1; RIG-I-like receptor; antiviral signaling; dsRNA; immune-mediated apoptosis; immunopathology; innate immunity; integrated stress response; molecular condensate; stress granule
    DOI:  https://doi.org/10.1016/j.molcel.2023.03.010
  20. Nat Chem Biol. 2023 Apr 06.
      The interleukin-4 (IL-4) cytokine plays a critical role in modulating immune homeostasis. Although there is great interest in harnessing this cytokine as a therapeutic in natural or engineered formats, the clinical potential of native IL-4 is limited by its instability and pleiotropic actions. Here, we design IL-4 cytokine mimetics (denoted Neo-4) based on a de novo engineered IL-2 mimetic scaffold and demonstrate that these cytokines can recapitulate physiological functions of IL-4 in cellular and animal models. In contrast with natural IL-4, Neo-4 is hyperstable and signals exclusively through the type I IL-4 receptor complex, providing previously inaccessible insights into differential IL-4 signaling through type I versus type II receptors. Because of their hyperstability, our computationally designed mimetics can directly incorporate into sophisticated biomaterials that require heat processing, such as three-dimensional-printed scaffolds. Neo-4 should be broadly useful for interrogating IL-4 biology, and the design workflow will inform targeted cytokine therapeutic development.
    DOI:  https://doi.org/10.1038/s41589-023-01313-6
  21. Nat Commun. 2023 Apr 06. 14(1): 1930
      Mutations in GBA1, the gene encoding the lysosomal enzyme β-glucocerebrosidase (GCase), which cause Gaucher's disease, are the most frequent genetic risk factor for Parkinson's disease (PD). Here, we employ global proteomic and single-cell genomic approaches in stable cell lines as well as induced pluripotent stem cell (iPSC)-derived neurons and midbrain organoids to dissect the mechanisms underlying GCase-related neurodegeneration. We demonstrate that GCase can be imported from the cytosol into the mitochondria via recognition of internal mitochondrial targeting sequence-like signals. In mitochondria, GCase promotes the maintenance of mitochondrial complex I (CI) integrity and function. Furthermore, GCase interacts with the mitochondrial quality control proteins HSP60 and LONP1. Disease-associated mutations impair CI stability and function and enhance the interaction with the mitochondrial quality control machinery. These findings reveal a mitochondrial role of GCase and suggest that defective CI activity and energy metabolism may drive the pathogenesis of GCase-linked neurodegeneration.
    DOI:  https://doi.org/10.1038/s41467-023-37454-4
  22. Nat Biotechnol. 2023 Apr 03.
      RNA velocity provides an approach for inferring cellular state transitions from single-cell RNA sequencing (scRNA-seq) data. Conventional RNA velocity models infer universal kinetics from all cells in an scRNA-seq experiment, resulting in unpredictable performance in experiments with multi-stage and/or multi-lineage transition of cell states where the assumption of the same kinetic rates for all cells no longer holds. Here we present cellDancer, a scalable deep neural network that locally infers velocity for each cell from its neighbors and then relays a series of local velocities to provide single-cell resolution inference of velocity kinetics. In the simulation benchmark, cellDancer shows robust performance in multiple kinetic regimes, high dropout ratio datasets and sparse datasets. We show that cellDancer overcomes the limitations of existing RNA velocity models in modeling erythroid maturation and hippocampus development. Moreover, cellDancer provides cell-specific predictions of transcription, splicing and degradation rates, which we identify as potential indicators of cell fate in the mouse pancreas.
    DOI:  https://doi.org/10.1038/s41587-023-01728-5
  23. Sci Immunol. 2023 Apr 14. 8(82): eadi0471
      TET2 disruption makes CAR-T cells work better, but not without a cost.
    DOI:  https://doi.org/10.1126/sciimmunol.adi0471
  24. Cell Stem Cell. 2023 Apr 06. pii: S1934-5909(23)00076-0. [Epub ahead of print]30(4): 378-395.e8
      Hematopoietic stem cell (HSC) self-renewal and aging are tightly regulated by paracrine factors from the bone marrow niche. However, whether HSC rejuvenation could be achieved by engineering a bone marrow niche ex vivo remains unknown. Here, we show that matrix stiffness fine-tunes HSC niche factor expression by bone marrow stromal cells (BMSCs). Increased stiffness activates Yap/Taz signaling to promote BMSC expansion upon 2D culture, which is largely reversed by 3D culture in soft gelatin methacrylate hydrogels. Notably, 3D co-culture with BMSCs promotes HSC maintenance and lymphopoiesis, reverses aging hallmarks of HSCs, and restores their long-term multilineage reconstitution capacity. In situ atomic force microscopy analysis reveals that mouse bone marrow stiffens with age, which correlates with a compromised HSC niche. Taken together, this study highlights the biomechanical regulation of the HSC niche by BMSCs, which could be harnessed to engineer a soft bone marrow niche for HSC rejuvenation.
    Keywords:  aging; bone marrow stromal cell; hematopoietic stem cell; matrix; niche; rejuvenation
    DOI:  https://doi.org/10.1016/j.stem.2023.03.005
  25. Cell Metab. 2023 Apr 04. pii: S1550-4131(23)00090-6. [Epub ahead of print]35(4): 553-554
      The human nervous system matures over a protracted developmental time frame relative to other species. What sets the pace of maturation has remained a mystery. In a recent publication in Science, Iwata et al. unearth critical contributions of mitochondrial metabolism in setting the pace of species-specific corticogenesis.
    DOI:  https://doi.org/10.1016/j.cmet.2023.03.012
  26. Nature. 2023 Apr 05.
      
    Keywords:  Cell biology; Structural biology
    DOI:  https://doi.org/10.1038/d41586-023-00727-5
  27. Cell Rep. 2023 Apr 06. pii: S2211-1247(23)00346-7. [Epub ahead of print]42(4): 112335
      Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons. GLUT3cKO and PKM1cKO mice show age-dependent learning and memory deficits. Hyperpolarized magnetic resonance spectroscopic (MRS) imaging shows that female PKM1cKO mice have increased pyruvate-to-lactate conversion, whereas female GLUT3cKO mice have decreased conversion, body weight, and brain volume. GLUT3KO neurons also have decreased cytosolic glucose and ATP at nerve terminals, with spatial genomics and metabolomics revealing compensatory changes in mitochondrial bioenergetics and galactose metabolism. Therefore, neurons metabolize glucose through glycolysis in vivo and require glycolysis for normal function.
    Keywords:  CP: Neuroscience; bioenergetics; brain energy; galactose metabolism; glucose transporter; glycolysis; hyperpolarized magnetic resonance spectroscopic imaging; metabolomics; neuronal glucose metabolism; pyruvate kinase
    DOI:  https://doi.org/10.1016/j.celrep.2023.112335
  28. Nat Commun. 2023 Apr 01. 14(1): 1830
      Recent data have shown that liver fibrosis can regress even at later stages of cirrhosis and shifting the immune response from pro-inflammatory towards a resolutive profile is considered as a promising option. The immune regulatory networks that govern the shift of the inflammatory phenotype and thus potential reversal of liver fibrosis are lesser known. Here we show that in precision-cut human liver slices obtained from patients with end-stage fibrosis and in mouse models, inhibiting Mucosal-Associated Invariant T (MAIT) cells using pharmacological or antibody-driven approaches, limits fibrosis progression and even regresses fibrosis, following chronic toxic- or non-alcoholic steatohepatitis (NASH)-induced liver injury. Mechanistic studies, combining RNA sequencing, in vivo functional studies (performed in male mice) and co-culture experiments indicate that disruption of the MAIT cell-monocyte/macrophage interaction results in resolution of fibrosis both by increasing the frequency of restorative Ly6Clo at the expenses of pro-fibrogenic Ly6Chi monocyte-derived macrophages and promoting an autophagic phenotype in both subsets. Thus, our data show that MAIT cell activation and the consequential phenotype shift of liver macrophages are important pathogenic features of liver fibrosis and could be targeted by anti-fibrogenic therapy.
    DOI:  https://doi.org/10.1038/s41467-023-37453-5
  29. Nature. 2023 Apr 05.
      The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.
    DOI:  https://doi.org/10.1038/s41586-023-05933-9
  30. Nat Commun. 2023 Apr 04. 14(1): 1871
      Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl-) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored. Here we show that astrocytes act as a dynamic Cl- reservoir regulating Cl- homoeostasis in the CNS. We found that intracellular chloride concentration ([Cl-]i) in astrocytes is high and stable during sleep. In awake mice astrocytic [Cl-]i is lower and exhibits large fluctuation in response to both sensory input and motor activity. Optogenetic manipulation of astrocytic [Cl-]i directly modulates neuronal activity during locomotion or whisker stimulation. Astrocytes thus serve as a dynamic source of extracellular Cl- available for GABAergic transmission in awake mice, which represents a mechanism for modulation of the inhibitory tone during sustained neuronal activity.
    DOI:  https://doi.org/10.1038/s41467-023-37433-9
  31. Nature. 2023 Apr 05.
      Natural killer (NK) cell kill infected, transformed and stressed cells when an activating NK cell receptor is triggered1. Most NK cells and some innate lymphoid cells express the activating receptor NKp46, encoded by NCR1, the most evolutionarily ancient NK cell receptor2,3. Blockage of NKp46 inhibits NK killing of many cancer targets4. Although a few infectious NKp46 ligands have been identified, the endogenous NKp46 cell surface ligand is unknown. Here we show that NKp46 recognizes externalized calreticulin (ecto-CRT), which translocates from the endoplasmic reticulum (ER) to the cell membrane during ER stress. ER stress and ecto-CRT are hallmarks of chemotherapy-induced immunogenic cell death5,6, flavivirus infection and senescence. NKp46 recognition of the P domain of ecto-CRT triggers NK cell signalling and NKp46 caps with ecto-CRT in NK immune synapses. NKp46-mediated killing is inhibited by knockout or knockdown of CALR, the gene encoding CRT, or CRT antibodies, and is enhanced by ectopic expression of glycosylphosphatidylinositol-anchored CRT. NCR1)-deficient human (and Nrc1-deficient mouse) NK cells are impaired in the killing of ZIKV-infected, ER-stressed and senescent cells and ecto-CRT-expressing cancer cells. Importantly, NKp46 recognition of ecto-CRT controls mouse B16 melanoma and RAS-driven lung cancers and enhances tumour-infiltrating NK cell degranulation and cytokine secretion. Thus, NKp46 recognition of ecto-CRT as a danger-associated molecular pattern eliminates ER-stressed cells.
    DOI:  https://doi.org/10.1038/s41586-023-05912-0
  32. Nature. 2023 Apr;616(7955): 26-28
      
    Keywords:  Alzheimer's disease; Drug discovery; Neuroscience
    DOI:  https://doi.org/10.1038/d41586-023-00954-w
  33. PNAS Nexus. 2023 Mar;2(3): pgad068
      Store-operated calcium entry (SOCE) is a vital process aimed at refilling cellular internal Ca2+ stores and a primary cellular signaling driver for transcription factors' entry to the nucleus. SOCE-associated regulatory factor (SARAF)/TMEM66 is an endoplasmic reticulum (ER)-resident transmembrane protein that promotes SOCE inactivation and prevents Ca2+ overfilling of the cell. Here, we demonstrate that mice deficient in SARAF develop age-dependent sarcopenic obesity with decreased energy expenditure, lean mass, and locomotion without affecting food consumption. Moreover, SARAF ablation reduces hippocampal proliferation, modulates the activity of the hypothalamus-pituitary-adrenal (HPA) axis, and mediates changes in anxiety-related behaviors. Interestingly, selective SARAF ablation in the hypothalamus's paraventricular nucleus (PVN) neurons reduces old age-induced obesity and preserves locomotor activity, lean mass, and energy expenditure, suggesting a possible central control with a site-specific role for SARAF. At the cellular level, SARAF ablation in hepatocytes leads to elevated SOCE, elevated vasopressin-induced Ca2+ oscillations, and an increased mitochondrial spare respiratory capacity (SPC), thus providing insights into the cellular mechanisms that may affect the global phenotypes. These effects may be mediated via the liver X receptor (LXR) and IL-1 signaling metabolic regulators explicitly altered in SARAF ablated cells. In short, our work supports both central and peripheral roles of SARAF in regulating metabolic, behavioral, and cellular responses.
    DOI:  https://doi.org/10.1093/pnasnexus/pgad068
  34. Commun Biol. 2023 Apr 07. 6(1): 374
      Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.
    DOI:  https://doi.org/10.1038/s42003-023-04730-4
  35. Nat Commun. 2023 Apr 03. 14(1): 1730
      An oxalate-degrading bacterium in the gut microbiota absorbs food-derived oxalate to use this as a carbon and energy source, thereby reducing the risk of kidney stone formation in host animals. The bacterial oxalate transporter OxlT selectively uptakes oxalate from the gut to bacterial cells with a strict discrimination from other nutrient carboxylates. Here, we present crystal structures of oxalate-bound and ligand-free OxlT in two distinct conformations, occluded and outward-facing states. The ligand-binding pocket contains basic residues that form salt bridges with oxalate while preventing the conformational switch to the occluded state without an acidic substrate. The occluded pocket can accommodate oxalate but not larger dicarboxylates, such as metabolic intermediates. The permeation pathways from the pocket are completely blocked by extensive interdomain interactions, which can be opened solely by a flip of a single side chain neighbouring the substrate. This study shows the structural basis underlying metabolic interactions enabling favourable symbiosis.
    DOI:  https://doi.org/10.1038/s41467-023-36883-5
  36. Cell Metab. 2023 Apr 04. pii: S1550-4131(23)00085-2. [Epub ahead of print]35(4): 711-721.e4
      Metabolism is fundamental to life, but measuring metabolic reaction rates remains challenging. Here, we applied C13 fluxomics to monitor the metabolism of dietary glucose carbon in 12 tissues, 9 brain compartments, and over 1,000 metabolite isotopologues over a 4-day period. The rates of 85 reactions surrounding central carbon metabolism are determined with elementary metabolite unit (EMU) modeling. Lactate oxidation, not glycolysis, occurs at a comparable pace with the tricarboxylic acid cycle (TCA), supporting lactate as the primary fuel. We expand the EMU framework to track and quantify metabolite flows across tissues. Specifically, multi-organ EMU simulation of uridine metabolism shows that tissue-blood exchange, not synthesis, controls nucleotide homeostasis. In contrast, isotopologue fingerprinting and kinetic analyses reveal the brown adipose tissue (BAT) having the highest palmitate synthesis activity but no apparent contribution to circulation, suggesting a tissue-autonomous synthesis-to-burn mechanism. Together, this study demonstrates the utility of dietary fluxomics for kinetic mapping in vivo and provides a rich resource for elucidating inter-organ metabolic cross talk.
    Keywords:  dietary fluxomics; elementary metabolite units; inter-organ metabolite flow; multi-organ EMU modeling
    DOI:  https://doi.org/10.1016/j.cmet.2023.03.007
  37. Nat Microbiol. 2023 Apr 03.
      Clonal bacterial populations rely on transcriptional variation across individual cells to produce specialized states that increase fitness. Understanding all cell states requires studying isogenic bacterial populations at the single-cell level. Here we developed probe-based bacterial sequencing (ProBac-seq), a method that uses libraries of DNA probes and an existing commercial microfluidic platform to conduct bacterial single-cell RNA sequencing. We sequenced the transcriptome of thousands of individual bacterial cells per experiment, detecting several hundred transcripts per cell on average. Applied to Bacillus subtilis and Escherichia coli, ProBac-seq correctly identifies known cell states and uncovers previously unreported transcriptional heterogeneity. In the context of bacterial pathogenesis, application of the approach to Clostridium perfringens reveals heterogeneous expression of toxin by a subpopulation that can be controlled by acetate, a short-chain fatty acid highly prevalent in the gut. Overall, ProBac-seq can be used to uncover heterogeneity in isogenic microbial populations and identify perturbations that affect pathogenicity.
    DOI:  https://doi.org/10.1038/s41564-023-01348-4
  38. Nature. 2023 Apr 05.
      Human gene expression is regulated by more than 2,000 transcription factors and chromatin regulators1,2. Effector domains within these proteins can activate or repress transcription. However, for many of these regulators we do not know what type of effector domains they contain, their location in the protein, their activation and repression strengths, and the sequences that are necessary for their functions. Here, we systematically measure the effector activity of more than 100,000 protein fragments tiling across most chromatin regulators and transcription factors in human cells (2,047 proteins). By testing the effect they have when recruited at reporter genes, we annotate 374 activation domains and 715 repression domains, roughly 80% of which are new and have not been previously annotated3-5. Rational mutagenesis and deletion scans across all the effector domains reveal aromatic and/or leucine residues interspersed with acidic, proline, serine and/or glutamine residues are necessary for activation domain activity. Furthermore, most repression domain sequences contain sites for small ubiquitin-like modifier (SUMO)ylation, short interaction motifs for recruiting corepressors or are structured binding domains for recruiting other repressive proteins. We discover bifunctional domains that can both activate and repress, some of which dynamically split a cell population into high- and low-expression subpopulations. Our systematic annotation and characterization of effector domains provide a rich resource for understanding the function of human transcription factors and chromatin regulators, engineering compact tools for controlling gene expression and refining predictive models of effector domain function.
    DOI:  https://doi.org/10.1038/s41586-023-05906-y
  39. Nat Med. 2023 Apr 06.
      Cancer immunotherapies have unique toxicities. Establishment of grading scales and standardized grade-based treatment algorithms for toxicity syndromes can improve the safety of these treatments, as observed for cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity syndrome (ICANS) in patients with B cell malignancies treated with chimeric antigen receptor (CAR) T cell therapy. We have observed a toxicity syndrome, distinct from CRS and ICANS, in patients treated with cell therapies for tumors in the central nervous system (CNS), which we term tumor inflammation-associated neurotoxicity (TIAN). Encompassing the concept of 'pseudoprogression,' but broader than inflammation-induced edema alone, TIAN is relevant not only to cellular therapies, but also to other immunotherapies for CNS tumors. To facilitate the safe administration of cell therapies for patients with CNS tumors, we define TIAN, propose a toxicity grading scale for TIAN syndrome and discuss the potential management of this entity, with the goal of standardizing both reporting and management.
    DOI:  https://doi.org/10.1038/s41591-023-02276-w
  40. EMBO Rep. 2023 Apr 03. e55764
      Mitochondrial ribosomal proteins (MRPs) assemble as specialized ribosome to synthesize mtDNA-encoded proteins, which are essential for mitochondrial bioenergetic and metabolic processes. MRPs are required for fundamental cellular activities during animal development, but their roles beyond mitochondrial protein translation are poorly understood. Here, we report a conserved role of the mitochondrial ribosomal protein L4 (mRpL4) in Notch signaling. Genetic analyses demonstrate that mRpL4 is required in the Notch signal-receiving cells to permit target gene transcription during Drosophila wing development. We find that mRpL4 physically and genetically interacts with the WD40 repeat protein wap and activates the transcription of Notch signaling targets. We show that human mRpL4 is capable of replacing fly mRpL4 during wing development. Furthermore, knockout of mRpL4 in zebrafish leads to downregulated expression of Notch signaling components. Thus, we have discovered a previously unknown function of mRpL4 during animal development.
    Keywords:   Drosophila ; Notch; mitochondrial ribosomal protein L4; wap; zebrafish
    DOI:  https://doi.org/10.15252/embr.202255764
  41. Immunity. 2023 Mar 26. pii: S1074-7613(23)00119-X. [Epub ahead of print]
      Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.
    Keywords:  Flt3L; acute lower respiratory tract infection; asthma; bronchiolitis; dendritic cells; microbiome; milk; regulatory T cell; respiratory synctial virus; virus
    DOI:  https://doi.org/10.1016/j.immuni.2023.03.002