bims-nimamd Biomed News
on Neuroimmunity and neuroinflammation in ageing and metabolic disease
Issue of 2023–03–19
fifty papers selected by
Fawaz Alzaïd, Sorbonne Université



  1. Nat Commun. 2023 Mar 11. 14(1): 1339
      Genetic circuits that control transgene expression in response to pre-defined transcriptional cues would enable the development of smart therapeutics. To this end, here we engineer programmable single-transcript RNA sensors in which adenosine deaminases acting on RNA (ADARs) autocatalytically convert target hybridization into a translational output. Dubbed DART VADAR (Detection and Amplification of RNA Triggers via ADAR), our system amplifies the signal from editing by endogenous ADAR through a positive feedback loop. Amplification is mediated by the expression of a hyperactive, minimal ADAR variant and its recruitment to the edit site via an orthogonal RNA targeting mechanism. This topology confers high dynamic range, low background, minimal off-target effects, and a small genetic footprint. We leverage DART VADAR to detect single nucleotide polymorphisms and modulate translation in response to endogenous transcript levels in mammalian cells.
    DOI:  https://doi.org/10.1038/s41467-023-36851-z
  2. Nat Commun. 2023 Mar 13. 14(1): 1362
      Adipocytes robustly synthesize fatty acids (FA) from carbohydrate through the de novo lipogenesis (DNL) pathway, yet surprisingly DNL contributes little to their abundant triglyceride stored in lipid droplets. This conundrum raises the hypothesis that adipocyte DNL instead enables membrane expansions to occur in processes like autophagy, which requires an abundant supply of phospholipids. We report here that adipocyte Fasn deficiency in vitro and in vivo markedly impairs autophagy, evident by autophagosome accumulation and severely compromised degradation of the autophagic substrate p62. Our data indicate the impairment occurs at the level of autophagosome-lysosome fusion, and indeed, loss of Fasn decreases certain membrane phosphoinositides necessary for autophagosome and lysosome maturation and fusion. Autophagy dependence on FA produced by Fasn is not fully alleviated by exogenous FA in cultured adipocytes, and interestingly, imaging studies reveal that Fasn colocalizes with nascent autophagosomes. Together, our studies identify DNL as a critical source of FAs to fuel autophagosome and lysosome maturation and fusion in adipocytes.
    DOI:  https://doi.org/10.1038/s41467-023-37016-8
  3. Nat Cell Biol. 2023 Mar 16.
      The pancreatic islets are composed of discrete hormone-producing cells that orchestrate systemic glucose homeostasis. Here we identify subsets of beta cells using a single-cell transcriptomic approach. One subset of beta cells marked by high CD63 expression is enriched for the expression of mitochondrial metabolism genes and exhibits higher mitochondrial respiration compared with CD63lo beta cells. Human and murine pseudo-islets derived from CD63hi beta cells demonstrate enhanced glucose-stimulated insulin secretion compared with pseudo-islets from CD63lo beta cells. We show that CD63hi beta cells are diminished in mouse models of and in humans with type 2 diabetes. Finally, transplantation of pseudo-islets generated from CD63hi but not CD63lo beta cells into diabetic mice restores glucose homeostasis. These findings suggest that loss of a specific subset of beta cells may lead to diabetes. Strategies to reconstitute or maintain CD63hi beta cells may represent a potential anti-diabetic therapy.
    DOI:  https://doi.org/10.1038/s41556-023-01103-1
  4. Nat Immunol. 2023 Mar 13.
      Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.
    DOI:  https://doi.org/10.1038/s41590-023-01444-x
  5. Nat Commun. 2023 Mar 13. 14(1): 1379
      Obesity, one of the most serious public health issues, is caused by the imbalance of energy intake and energy expenditure. N(6)-methyladenosine (m6A) RNA modification has been recently identified as a key regulator of obesity, while the detailed mechanism is elusive. Here, we find that YTH RNA binding protein 1 (YTHDF1), an m6A reader, acts as an essential regulator of white adipose tissue metabolism. The expression of YTHDF1 decreases in adipose tissue of male mice fed a high-fat diet. Adipocyte-specific Ythdf1 deficiency exacerbates obesity-induced metabolic defects and inhibits beiging of inguinal white adipose tissue (iWAT) in male mice. By contrast, male mice with WAT-specific YTHDF1 overexpression are resistant to obesity and shows promotion of beiging. Mechanistically, YTHDF1 regulates the translation of diverse m6A-modified mRNAs. In particular, YTHDF1 facilitates the translation of bone morphogenetic protein 8b (Bmp8b) in an m6A-dependent manner to induce the beiging process. Here, we show that YTHDF1 may be an potential therapeutic target for the management of obesity-associated diseases.
    DOI:  https://doi.org/10.1038/s41467-023-37100-z
  6. Immunity. 2023 Mar 07. pii: S1074-7613(23)00092-4. [Epub ahead of print]
      Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.
    Keywords:  Citrobacter rodentium; ROS signals; TH17 cells; commensal bacterial; epithelial endoplasmic reticulum stress; inflammatory bowel disease; purine metabolism
    DOI:  https://doi.org/10.1016/j.immuni.2023.02.018
  7. Nat Commun. 2023 Mar 17. 14(1): 1477
      Spatial analysis of microbiomes at single cell resolution with high multiplexity and accuracy has remained challenging. Here we present spatial profiling of a microbiome using sequential error-robust fluorescence in situ hybridization (SEER-FISH), a highly multiplexed and accurate imaging method that allows mapping of microbial communities at micron-scale. We show that multiplexity of RNA profiling in microbiomes can be increased significantly by sequential rounds of probe hybridization and dissociation. Combined with error-correction strategies, we demonstrate that SEER-FISH enables accurate taxonomic identification in complex microbial communities. Using microbial communities composed of diverse bacterial taxa isolated from plant rhizospheres, we apply SEER-FISH to quantify the abundance of each taxon and map microbial biogeography on roots. At micron-scale, we identify clustering of microbial cells from multiple species on the rhizoplane. Under treatment of plant metabolites, we find spatial re-organization of microbial colonization along the root and alterations in spatial association among microbial taxa. Taken together, SEER-FISH provides a useful method for profiling the spatial ecology of complex microbial communities in situ.
    DOI:  https://doi.org/10.1038/s41467-023-37188-3
  8. Nat Metab. 2023 Mar 13.
      Our understanding of how global changes in cellular metabolism contribute to human kidney disease remains incompletely understood. Here we show that nicotinamide adenine dinucleotide (NAD+) deficiency drives mitochondrial dysfunction causing inflammation and kidney disease development. Using unbiased global metabolomics in healthy and diseased human kidneys, we identify NAD+ deficiency as a disease signature. Furthermore using models of cisplatin- or ischaemia-reperfusion induced kidney injury in male mice we observed NAD+ depletion Supplemental nicotinamide riboside or nicotinamide mononucleotide restores NAD+ levels and improved kidney function. We find that cisplatin exposure causes cytosolic leakage of mitochondrial RNA (mtRNA) and activation of the cytosolic pattern recognition receptor retinoic acid-inducible gene I (RIG-I), both of which can be ameliorated by restoring NAD+. Male mice with RIG-I knock-out (KO) are protected from cisplatin-induced kidney disease. In summary, we demonstrate that the cytosolic release of mtRNA and RIG-I activation is an NAD+-sensitive mechanism contributing to kidney disease.
    DOI:  https://doi.org/10.1038/s42255-023-00761-7
  9. Nat Commun. 2023 Mar 13. 14(1): 1376
      Mitochondrial transport along microtubules is mediated by Miro1 and TRAK adaptors that recruit kinesin-1 and dynein-dynactin. To understand how these opposing motors are regulated during mitochondrial transport, we reconstitute the bidirectional transport of Miro1/TRAK along microtubules in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin and enhances the motility of kinesin-1 activated by its cofactor MAP7. We find that TRAK adaptors that recruit both motors move towards kinesin-1's direction, whereas kinesin-1 is excluded from binding TRAK transported by dynein-dynactin, avoiding motor tug-of-war. We also test the predictions of the models that explain how mitochondrial transport stalls in regions with elevated Ca2+. Transport of Miro1/TRAK by kinesin-1 is not affected by Ca2+. Instead, we demonstrate that the microtubule docking protein syntaphilin induces resistive forces that stall kinesin-1 and dynein-driven motility. Our results suggest that mitochondrial transport stalls by Ca2+-mediated recruitment of syntaphilin to the mitochondrial membrane, not by disruption of the transport machinery.
    DOI:  https://doi.org/10.1038/s41467-023-36945-8
  10. EMBO J. 2023 Mar 14. e111901
      Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet β-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.
    Keywords:  CPT1; fatty acid oxidation; fission; fusion; mitochondrial dynamics
    DOI:  https://doi.org/10.15252/embj.2022111901
  11. Nature. 2023 Mar 15.
      Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer1-6. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus7-9, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature10. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.
    DOI:  https://doi.org/10.1038/s41586-023-05824-z
  12. Nat Commun. 2023 Mar 15. 14(1): 1450
      Disruption of brain-expressed G protein-coupled receptor-10 (GPR10) causes obesity in animals. Here, we identify multiple rare variants in GPR10 in people with severe obesity and in normal weight controls. These variants impair ligand binding and G protein-dependent signalling in cells. Transgenic mice harbouring a loss of function GPR10 variant found in an individual with obesity, gain excessive weight due to decreased energy expenditure rather than increased food intake. This evidence supports a role for GPR10 in human energy homeostasis. Therapeutic targeting of GPR10 may represent an effective weight-loss strategy.
    DOI:  https://doi.org/10.1038/s41467-023-36966-3
  13. EMBO J. 2023 Mar 14. e109803
      Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
    Keywords:  Batf; Ets1; Runx1; Th17; plasticity
    DOI:  https://doi.org/10.15252/embj.2021109803
  14. Nat Commun. 2023 Mar 17. 14(1): 1499
      Integrative analyses of transcriptomic and neuroimaging data have generated a wealth of information about biological pathways underlying regional variability in imaging-derived brain phenotypes in humans, but rarely in nonhuman primates due to the lack of a comprehensive anatomically-defined atlas of brain transcriptomics. Here we generate complementary bulk RNA-sequencing dataset of 819 samples from 110 brain regions and single-nucleus RNA-sequencing dataset, and neuroimaging data from 162 cynomolgus macaques, to examine the link between brain-wide gene expression and regional variation in morphometry. We not only observe global/regional expression profiles of macaque brain comparable to human but unravel a dorsolateral-ventromedial gradient of gene assemblies within the primate frontal lobe. Furthermore, we identify a set of 971 protein-coding and 34 non-coding genes consistently associated with cortical thickness, specially enriched for neurons and oligodendrocytes. These data provide a unique resource to investigate nonhuman primate models of human diseases and probe cross-species evolutionary mechanisms.
    DOI:  https://doi.org/10.1038/s41467-023-37246-w
  15. Nat Commun. 2023 Mar 14. 14(1): 1399
      During apoptosis, mitochondrial outer membrane permeabilization (MOMP) enables certain mitochondrial matrix macromolecules to escape into the cytosol. However, the fate of mitochondrial RNA (mtRNA) during apoptosis is unknown. Here, we demonstrate that MOMP results in the cytoplasmic release of mtRNA and that executioner caspases-3 and -7 (casp3/7) prevent cytoplasmic mtRNA from triggering inflammatory signaling. In the setting of genetic or pharmacological casp3/7 inhibition, apoptotic insults result in mtRNA activation of the MDA5/MAVS/IRF3 pathway to drive Type I interferon (IFN) signaling. This pathway is sufficient to activate tumor-intrinsic Type I IFN signaling in immunologically cold cancer models that lack an intact cGAS/STING signaling pathway, promote CD8+ T-cell-dependent anti-tumor immunity, and overcome anti-PD1 refractoriness in vivo. Thus, a key function of casp3/7 is to inhibit inflammation caused by the cytoplasmic release of mtRNA, and pharmacological modulation of this pathway increases the immunogenicity of chemotherapy-induced apoptosis.
    DOI:  https://doi.org/10.1038/s41467-023-37146-z
  16. Nat Commun. 2023 Mar 16. 14(1): 1462
      Protection from viral infections depends on immunoglobulin isotype switching, which endows antibodies with effector functions. Here, we find that the protein kinase DYRK1A is essential for B cell-mediated protection from viral infection and effective vaccination through regulation of class switch recombination (CSR). Dyrk1a-deficient B cells are impaired in CSR activity in vivo and in vitro. Phosphoproteomic screens and kinase-activity assays identify MSH6, a DNA mismatch repair protein, as a direct substrate for DYRK1A, and deletion of a single phosphorylation site impaired CSR. After CSR and germinal center (GC) seeding, DYRK1A is required for attenuation of B cell proliferation. These findings demonstrate DYRK1A-mediated biological mechanisms of B cell immune responses that may be used for therapeutic manipulation in antibody-mediated autoimmunity.
    DOI:  https://doi.org/10.1038/s41467-023-37205-5
  17. Proc Natl Acad Sci U S A. 2023 Mar 21. 120(12): e2215914120
      How bacterial strains within a complex human microbiota collectively shape intestinal T cell homeostasis is not well understood. Methods that quickly identify effector strains or species that drive specific mucosal T cell phenotypes are needed to define general principles for how the microbiota modulates host immunity. We colonize germ-free mice with defined communities of cultured strains and profile antigen-specific responses directed toward individual strains ex vivo. We find that lamina propria T cells are specific to bacterial strains at the species level and can discriminate between strains of the same species. Ex vivo restimulations consistently identify the strains within complex communities that induce Th17 responses in vivo, providing the potential to shape baseline immune tone via community composition. Using an adoptive transfer model of colitis, we find that lamina propria T cells respond to different bacterial strains in conditions of inflammation versus homeostasis. Collectively, our approach represents a unique method for efficiently predicting the relative impact of individual bacterial strains within a complex community and for parsing microbiota-dependent phenotypes into component fractions.
    Keywords:  T cells; host-microbe; microbiome; mucosal T cell responses
    DOI:  https://doi.org/10.1073/pnas.2215914120
  18. Nat Commun. 2023 Mar 14. 14(1): 1411
    William J Young, Jeffrey Haessler, Jan-Walter Benjamins, Linda Repetto, Jie Yao, Aaron Isaacs, Andrew R Harper, Julia Ramirez, Sophie Garnier, Stefan van Duijvenboden, Antoine R Baldassari, Maria Pina Concas, ThuyVy Duong, Luisa Foco, Jonas L Isaksen, Hao Mei, Raymond Noordam, Casia Nursyifa, Anne Richmond, Meddly L Santolalla, Colleen M Sitlani, Negin Soroush, Sébastien Thériault, Stella Trompet, Stefanie Aeschbacher, Fariba Ahmadizar, Alvaro Alonso, Jennifer A Brody, Archie Campbell, Adolfo Correa, Dawood Darbar, Antonio De Luca, Jean-François Deleuze, Christina Ellervik, Christian Fuchsberger, Anuj Goel, Christopher Grace, Xiuqing Guo, Torben Hansen, Susan R Heckbert, Rebecca D Jackson, Jan A Kors, Maria Fernanda Lima-Costa, Allan Linneberg, Peter W Macfarlane, Alanna C Morrison, Pau Navarro, David J Porteous, Peter P Pramstaller, Alexander P Reiner, Lorenz Risch, Ulrich Schotten, Xia Shen, Gianfranco Sinagra, Elsayed Z Soliman, Monika Stoll, Eduardo Tarazona-Santos, Andrew Tinker, Katerina Trajanoska, Eric Villard, Helen R Warren, Eric A Whitsel, Kerri L Wiggins, Dan E Arking, Christy L Avery, David Conen, Giorgia Girotto, Niels Grarup, Caroline Hayward, J Wouter Jukema, Dennis O Mook-Kanamori, Morten Salling Olesen, Sandosh Padmanabhan, Bruce M Psaty, Cristian Pattaro, Antonio Luiz P Ribeiro, Jerome I Rotter, Bruno H Stricker, Pim van der Harst, Cornelia M van Duijn, Niek Verweij, James G Wilson, Michele Orini, Philippe Charron, Hugh Watkins, Charles Kooperberg, Henry J Lin, James F Wilson, Jørgen K Kanters, Nona Sotoodehnia, Borbala Mifsud, Pier D Lambiase, Larisa G Tereshchenko, Patricia B Munroe.
      The 3-dimensional spatial and 2-dimensional frontal QRS-T angles are measures derived from the vectorcardiogram. They are independent risk predictors for arrhythmia, but the underlying biology is unknown. Using multi-ancestry genome-wide association studies we identify 61 (58 previously unreported) loci for the spatial QRS-T angle (N = 118,780) and 11 for the frontal QRS-T angle (N = 159,715). Seven out of the 61 spatial QRS-T angle loci have not been reported for other electrocardiographic measures. Enrichments are observed in pathways related to cardiac and vascular development, muscle contraction, and hypertrophy. Pairwise genome-wide association studies with classical ECG traits identify shared genetic influences with PR interval and QRS duration. Phenome-wide scanning indicate associations with atrial fibrillation, atrioventricular block and arterial embolism and genetically determined QRS-T angle measures are associated with fascicular and bundle branch block (and also atrioventricular block for the frontal QRS-T angle). We identify potential biology involved in the QRS-T angle and their genetic relationships with cardiovascular traits and diseases, may inform future research and risk prediction.
    DOI:  https://doi.org/10.1038/s41467-023-36997-w
  19. Immunol Rev. 2023 Mar 16.
      Neutrophil recruitment from circulation to sites of inflammation is guided by multiple chemoattractant cues emanating from tissue cells, immune cells, and platelets. Here, we focus on the function of one G-protein coupled receptor, GPR35, in neutrophil recruitment. GPR35 has been challenging to study due the description of multiple ligands and G-protein couplings. Recently, we found that GPR35-expressing hematopoietic cells respond to the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). We discuss distinct response profiles of GPR35 to 5-HIAA compared to other ligands. To place the functions of 5-HIAA in context, we summarize the actions of serotonin in vascular biology and leukocyte recruitment. Important sources of serotonin and 5-HIAA are platelets and mast cells. We discuss the dynamics of cell migration into inflamed tissues and how multiple platelet and mast cell-derived mediators, including 5-HIAA, cooperate to promote neutrophil recruitment. Additional actions of GPR35 in tissue physiology are reviewed. Finally, we discuss how clinically approved drugs that modulate serotonin uptake and metabolism may influence 5-HIAA-GPR35 function, and we speculate about broader influences of the GPR35 ligand-receptor system in immunity and disease.
    Keywords:  GPCRs; chemotaxis; lipid mediators; mast cells; neutrophils; platelets
    DOI:  https://doi.org/10.1111/imr.13194
  20. Nature. 2023 Mar 15.
      Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.
    DOI:  https://doi.org/10.1038/s41586-023-05793-3
  21. Mol Cell. 2023 Mar 16. pii: S1097-2765(23)00152-1. [Epub ahead of print]83(6): 824-826
      We highlight papers by Diaz-Cuadros et al.1 and Iwata et al.2 that demonstrate the role of mitochondrial metabolism in setting developmental pace through their control over cellular bioenergetics and redox homeostasis in mice and humans.
    DOI:  https://doi.org/10.1016/j.molcel.2023.02.025
  22. Nature. 2023 Mar 15.
      Lactate is abundant in rapidly dividing cells due to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here, we deploy a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we elucidate a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodeling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We discover that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. The above mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient replete growth phase to stimulate timed opening of APC/C, cell division, and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodeling and can overcome anti-mitotic pharmacology via mitotic slippage. Taken together, we define a biochemical mechanism through which lactate directly regulates protein function to control cell cycle and proliferation.
    DOI:  https://doi.org/10.1038/s41586-023-05939-3
  23. Nat Commun. 2023 Mar 14. 14(1): 1409
      Natural killer cells are considered to be important for control of human cytomegalovirus- a major pathogen in immune suppressed transplant patients. Viral infection promotes the development of an adaptive phenotype in circulating natural killer cells that changes their anti-viral function. In contrast, less is understood how natural killer cells that reside in tissue respond to viral infection. Here we show natural killer cells resident in the liver have an altered phenotype in cytomegalovirus infected individuals and display increased anti-viral activity against multiple viruses in vitro and identify and characterise a subset of natural killer cells responsible for control. Crucially, livers containing natural killer cells with better capacity to control cytomegalovirus replication in vitro are less likely to experience viraemia post-transplant. Taken together, these data suggest that virally induced expansion of tissue resident natural killer cells in the donor organ can reduce the chance of viraemia post-transplant.
    DOI:  https://doi.org/10.1038/s41467-023-37181-w
  24. Nat Commun. 2023 Mar 14. 14(1): 1402
      Metabolic associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, including steatosis, nonalcoholic steatohepatitis (NASH) and fibrosis. We demonstrated that phosphoenolpyruvate carboxykinase 1 (PCK1) plays a central role in MAFLD progression. Male mice with liver Pck1 deficiency fed a normal diet displayed hepatic lipid disorder and liver injury, whereas fibrosis and inflammation were aggravated in mice fed a high-fat diet with drinking water containing fructose and glucose (HFCD-HF/G). Forced expression of hepatic PCK1 by adeno-associated virus ameliorated MAFLD in male mice. PCK1 deficiency stimulated lipogenic gene expression and lipid synthesis. Moreover, loss of hepatic PCK1 activated the RhoA/PI3K/AKT pathway by increasing intracellular GTP levels, increasing secretion of platelet-derived growth factor-AA (PDGF-AA), and promoting hepatic stellate cell activation. Treatment with RhoA and AKT inhibitors or gene silencing of RhoA or AKT1 alleviated MAFLD progression in vivo. Hepatic PCK1 deficiency may be important in hepatic steatosis and fibrosis development through paracrine secretion of PDGF-AA in male mice, highlighting a potential therapeutic strategy for MAFLD.
    DOI:  https://doi.org/10.1038/s41467-023-37142-3
  25. Science. 2023 Mar 17. 379(6637): 1158
      
    DOI:  https://doi.org/10.1126/science.adh5472
  26. Nat Genet. 2023 Mar 13.
      Following severe liver injury, when hepatocyte-mediated regeneration is impaired, biliary epithelial cells (BECs) can transdifferentiate into functional hepatocytes. However, the subset of BECs with such facultative tissue stem cell potential, as well as the mechanisms enabling transdifferentiation, remains elusive. Here we identify a transitional liver progenitor cell (TLPC), which originates from BECs and differentiates into hepatocytes during regeneration from severe liver injury. By applying a dual genetic lineage tracing approach, we specifically labeled TLPCs and found that they are bipotent, as they either differentiate into hepatocytes or re-adopt BEC fate. Mechanistically, Notch and Wnt/β-catenin signaling orchestrate BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively. Together, our study provides functional and mechanistic insights into transdifferentiation-assisted liver regeneration.
    DOI:  https://doi.org/10.1038/s41588-023-01335-9
  27. Nat Commun. 2023 Mar 13. 14(1): 1364
      Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.
    DOI:  https://doi.org/10.1038/s41467-023-36829-x
  28. Nature. 2023 Mar 15.
      
    Keywords:  Diseases; Immunology; Nutrition
    DOI:  https://doi.org/10.1038/d41586-023-00784-w
  29. Immunity. 2023 Mar 14. pii: S1074-7613(23)00078-X. [Epub ahead of print]56(3): 500-515.e6
      The cGAS-STING pathway mediates cytoplasmic DNA-triggered innate immunity. STING activation is initiated by cyclic-GMP-AMP (cGAMP)-induced translocation from the endoplasmic reticulum and sulfated glycosaminoglycans-induced polymerization at the Golgi. Here, we examine the mechanisms underlying STING transport and activation beyond the Golgi. A genome-wide CRISPR-Cas9 screen identified Armadillo-like helical domain-containing protein 3 (ARMH3) as critical for STING activation. Upon cGAMP-triggered translocation, ARMH3 interacted with STING at the Golgi and recruited phosphatidylinositol 4-kinase beta (PI4KB) to synthesize PI4P, which directed STING Golgi-to-endosome trafficking via PI4P-binding proteins AP-1 and GGA2. Disrupting PI4P-dependent lipid transport through RNAi of other PI4P-binding proteins impaired STING activation. Consistently, disturbed lipid composition inhibited STING activation, whereas aberrantly elevated cellular PI4P led to cGAS-independent STING activation. Armh3fl/fllLyzCre/Cre mice were susceptible to DNA virus challenge in vivo. Thus, ARMH3 bridges STING and PIK4B to generate PI4P for STING transportation and activation, an interaction conserved in all eukaryotes.
    Keywords:  ARMH3; PI4KB; PI4P; STING; TMEM39A; autoimmune diseases; cGAS; innate immunity; phosphoinositides; viral infection
    DOI:  https://doi.org/10.1016/j.immuni.2023.02.004
  30. J Clin Invest. 2023 Mar 15. pii: e168215. [Epub ahead of print]133(6):
      A subset of the neurodegenerative disease frontotemporal lobar degeneration (FTLD) is caused by mutations in the progranulin (GRN) gene. In this issue of the JCI, Marsan and colleagues demonstrate disease-specific transcriptional profiles in multiple glial cell lineages - astrocytes, microglia, and oligodendroglia - that are highly conserved between patients with FTLD-GRN and the widely used Grn-/- mouse model. Additionally, the authors show that Grn-/- astrocytes fail to adequately maintain synapses in both mouse and human models. This study presents a compelling argument for a central role for glia in neurodegeneration and creates a rich resource for extending mechanistic insight into pathophysiology, identifying potential biomarkers, and developing therapeutic approaches.
    DOI:  https://doi.org/10.1172/JCI168215
  31. Mol Cell. 2023 Mar 16. pii: S1097-2765(23)00149-1. [Epub ahead of print]83(6): 829-831
      Hexokinase 2 (HK2) plays a multifaceted role in the regulation of cellular activities. A new study by Hu et al.1 delineated a critical role of HK2 in governing glycolytic flux and mitochondrial activity, thereby modulating microglial functions in maladaptive inflammation in brain diseases.
    DOI:  https://doi.org/10.1016/j.molcel.2023.02.022
  32. Cell. 2023 Mar 16. pii: S0092-8674(23)00054-5. [Epub ahead of print]186(6): 1101-1102
      Since CCR5 is a key co-receptor for HIV entry into cells, replacing an HIV patient's cells with CCR5-deficient cells is thought to protect the new hematopoietic/immune system from infection. In this issue of Cell, Hsu et al. show that transplanting a cord blood graft carrying the CCR5Δ32 mutation led to a durable HIV remission in a patient with HIV and leukemia.
    DOI:  https://doi.org/10.1016/j.cell.2023.01.024
  33. bioRxiv. 2023 Mar 04. pii: 2023.02.28.530490. [Epub ahead of print]
      Organism aging occurs at the multicellular level; however, how pro-longevity mechanisms slow down aging in different cell types remains unclear. We generated single-cell transcriptomic atlases across the lifespan of Caenorhabditis elegans under different pro-longevity conditions ( http://mengwanglab.org/atlas ). We found cell-specific, age-related changes across somatic and germ cell types and developed transcriptomic aging clocks for different tissues. These clocks enabled us to determine tissue-specific aging-slowing effects of different pro-longevity mechanisms, and identify major cell types sensitive to these regulations. Additionally, we provided a systemic view of alternative polyadenylation events in different cell types, as well as their cell-type-specific changes during aging and under different pro-longevity conditions. Together, this study provides molecular insights into how aging occurs in different cell types and how they respond to pro-longevity strategies.
    DOI:  https://doi.org/10.1101/2023.02.28.530490
  34. Nat Commun. 2023 Mar 11. 14(1): 1337
      The ability of biological systems to tightly regulate targeted variables, despite external and internal disturbances, is known as Robust Perfect Adaptation (RPA). Achieved frequently through biomolecular integral feedback controllers at the cellular level, RPA has important implications for biotechnology and its various applications. In this study, we identify inteins as a versatile class of genetic components suitable for implementing these controllers and present a systematic approach for their design. We develop a theoretical foundation for screening intein-based RPA-achieving controllers and a simplified approach for modeling them. We then genetically engineer and test intein-based controllers using commonly used transcription factors in mammalian cells and demonstrate their exceptional adaptation properties over a wide dynamic range. The small size, flexibility, and applicability of inteins across life forms allow us to create a diversity of genetic RPA-achieving integral feedback control systems that can be used in various applications, including metabolic engineering and cell-based therapy.
    DOI:  https://doi.org/10.1038/s41467-023-36863-9
  35. J Biol Chem. 2023 Mar 10. pii: S0021-9258(23)00241-7. [Epub ahead of print] 104599
      Immune cells adopt a variety of metabolic states to support their many biological functions, which include fighting pathogens, removing tissue debris, and tissue remodeling. One of the key mediators of these metabolic changes is the transcription factor hypoxia-inducible factor 1α (HIF-1α). Single-cell dynamics have been shown to be an important determinant of cell behavior; however, despite the importance of HIF-1α, little is known about its single-cell dynamics or their effect on metabolism. To address this knowledge gap, here we optimized a HIF-1α fluorescent reporter and applied it to study single-cell dynamics. First, we showed that single cells are likely able to differentiate multiple levels of prolyl hydroxylase inhibition, a marker of metabolic change, via HIF-1α activity. We then applied a physiological stimulus known to trigger metabolic change, interferon-γ, and observed heterogeneous, oscillatory HIF-1α responses in single cells. Finally, we input these dynamics into a mathematical model of HIF-1α-regulated metabolism, and discovered a profound difference between cells exhibiting high versus low HIF-1α activation. Specifically, we found cells with high HIF-1α activation are able to meaningfully reduce flux through the tricarboxylic acid cycle and show a notable increase in the NAD+/NADH ratio compared to cells displaying low HIF-1α activation. Altogether, this work demonstrates an optimized reporter for studying HIF-1α in single cells and reveals previously unknown principles of HIF-1α activation.
    Keywords:  fluorescence; hypoxia-inducible factor (HIF); mathematical modeling; microscopy; systems biology
    DOI:  https://doi.org/10.1016/j.jbc.2023.104599
  36. EMBO J. 2023 Mar 13. e112590
      During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated. We here present a single-cell transcriptomic atlas of lymphangiogenesis in zebrafish, revealing new markers and hallmarks of LEC differentiation over four developmental stages. We further profile single-cell transcriptomic and chromatin accessibility changes in zygotic prox1a mutants that are undergoing a LEC-VEC fate shift. Using maternal and zygotic prox1a/prox1b mutants, we determine the earliest transcriptomic changes directed by Prox1 during LEC specification. This work altogether reveals new downstream targets and regulatory regions of the genome controlled by Prox1 and presents evidence that Prox1 specifies LEC fate primarily by limiting blood vascular and haematopoietic fate. This extensive single-cell resource provides new mechanistic insights into the enigmatic role of Prox1 and the control of LEC differentiation in development.
    Keywords:  Notch1; Prox1; Vegfc single-cell sequencing; lymphangiogenesis; lymphatics
    DOI:  https://doi.org/10.15252/embj.2022112590
  37. Sci Signal. 2023 Mar 14. 16(776): eabq3362
      Interleukin-33 (IL-33) functions both as a secreted cytokine and as a nuclear factor, with pleiotropic roles in cancer and immunity. Here, we explored its role in hepatocellular carcinoma (HCC) and identified that a posttranslational modification altered its nuclear activity and promoted immune escape for HCC. IL-33 abundance was overall decreased but more frequently localized to the nucleus in patient HCC tissues than in normal liver tissues. In human and mouse HCC cells in culture and in vivo, IL-33 overexpression inhibited proliferation and repressed the abundance of programmed death ligand 1 (PD-L1) at the transcriptional level by promoting the ubiquitin-dependent degradation of interferon regulatory factor 1 (IRF1). However, this interaction was disrupted by SUMOylation of IL-33 at Lys54 mediated by the E3 ligase RanBP2. IL-33 SUMOylation correlated with its nuclear localization in HCC cells and tumors. An increase in SUMOylated IL-33 in HCC cells in cocultures and in vivo stabilized IRF1 and increased PD-L1 abundance and chemokine IL-8 secretion, which prevented the activation of cytotoxic T cells and promoted the M2 polarization of macrophages, respectively. Mutating the SUMOylation site in IL-33 reversed these effects and suppressed tumor growth. These findings indicate that SUMOylation of nuclear IL-33 in HCC cells impairs antitumor immunity.
    DOI:  https://doi.org/10.1126/scisignal.abq3362
  38. Nat Genet. 2023 Mar;55(3): 423-436
    DBDS Genomic Consortium
      Endometriosis is a common condition associated with debilitating pelvic pain and infertility. A genome-wide association study meta-analysis, including 60,674 cases and 701,926 controls of European and East Asian descent, identified 42 genome-wide significant loci comprising 49 distinct association signals. Effect sizes were largest for stage 3/4 disease, driven by ovarian endometriosis. Identified signals explained up to 5.01% of disease variance and regulated expression or methylation of genes in endometrium and blood, many of which were associated with pain perception/maintenance (SRP14/BMF, GDAP1, MLLT10, BSN and NGF). We observed significant genetic correlations between endometriosis and 11 pain conditions, including migraine, back and multisite chronic pain (MCP), as well as inflammatory conditions, including asthma and osteoarthritis. Multitrait genetic analyses identified substantial sharing of variants associated with endometriosis and MCP/migraine. Targeted investigations of genetically regulated mechanisms shared between endometriosis and other pain conditions are needed to aid the development of new treatments and facilitate early symptomatic intervention.
    DOI:  https://doi.org/10.1038/s41588-023-01323-z
  39. Commun Biol. 2023 Mar 11. 6(1): 259
      Rare sugars are monosaccharides with low natural abundance. They are structural isomers of dietary sugars, but hardly be metabolized. Here, we report that rare sugar L-sorbose induces apoptosis in various cancer cells. As a C-3 epimer of D-fructose, L-sorbose is internalized via the transporter GLUT5 and phosphorylated by ketohexokinase (KHK) to produce L-sorbose-1-phosphate (S-1-P). Cellular S-1-P inactivates the glycolytic enzyme hexokinase resulting in attenuated glycolysis. Consequently, mitochondrial function is impaired and reactive oxygen species are produced. Moreover, L-sorbose downregulates the transcription of KHK-A, a splicing variant of KHK. Since KHK-A is a positive inducer of antioxidation genes, the antioxidant defense mechanism in cancer cells can be attenuated by L-sorbose-treatment. Thus, L-sorbose performs multiple anticancer activities to induce cell apoptosis. In mouse xenograft models, L-sorbose enhances the effect of tumor chemotherapy in combination with other anticancer drugs. These results demonstrate L-sorbose as an attractive therapeutic reagent for cancer treatment.
    DOI:  https://doi.org/10.1038/s42003-023-04638-z
  40. Mol Cell. 2023 Mar 16. pii: S1097-2765(23)00118-1. [Epub ahead of print]83(6): 911-926
      Mitochondria are essential for cellular functions such as metabolism and apoptosis. They dynamically adapt to the changing environmental demands by adjusting their protein, nucleic acid, metabolite, and lipid contents. In addition, the mitochondrial components are modulated on different levels in response to changes, including abundance, activity, and interaction. A wide range of omics-based approaches has been developed to be able to explore mitochondrial adaptation and how mitochondrial function is compromised in disease contexts. Here, we provide an overview of the omics methods that allow us to systematically investigate the different aspects of mitochondrial biology. In addition, we show examples of how these methods have provided new biological insights. The emerging use of these toolboxes provides a more comprehensive understanding of the processes underlying mitochondrial function.
    DOI:  https://doi.org/10.1016/j.molcel.2023.02.015
  41. Nature. 2023 Mar 15.
      Chromatin-binding proteins are critical regulators of cell state in haematopoiesis1,2. Acute leukaemias driven by rearrangement of the mixed lineage leukaemia 1 gene (KMT2Ar) or mutation of the nucleophosmin gene (NPM1) require the chromatin adapter protein menin, encoded by the MEN1 gene, to sustain aberrant leukaemogenic gene expression programs3-5. In a phase 1 first-in-human clinical trial, the menin inhibitor revumenib, which is designed to disrupt the menin-MLL1 interaction, induced clinical responses in patients with leukaemia with KMT2Ar or mutated NPM1 (ref. 6). Here we identified somatic mutations in MEN1 at the revumenib-menin interface in patients with acquired resistance to menin inhibition. Consistent with the genetic data in patients, inhibitor-menin interface mutations represent a conserved mechanism of therapeutic resistance in xenograft models and in an unbiased base-editor screen. These mutants attenuate drug-target binding by generating structural perturbations that impact small-molecule binding but not the interaction with the natural ligand MLL1, and prevent inhibitor-induced eviction of menin and MLL1 from chromatin. To our knowledge, this study is the first to demonstrate that a chromatin-targeting therapeutic drug exerts sufficient selection pressure in patients to drive the evolution of escape mutants that lead to sustained chromatin occupancy, suggesting a common mechanism of therapeutic resistance.
    DOI:  https://doi.org/10.1038/s41586-023-05755-9
  42. EMBO Rep. 2023 Mar 17. e56114
      Vesicular transport is a means of communication. While cells can communicate with each other via secretion of extracellular vesicles, less is known regarding organelle-to organelle communication, particularly in the case of mitochondria. Mitochondria are responsible for the production of energy and for essential metabolic pathways in the cell, as well as fundamental processes such as apoptosis and aging. Here, we show that functional mitochondria isolated from Saccharomyces cerevisiae release vesicles, independent of the fission machinery. We isolate these mitochondrial-derived vesicles (MDVs) and find that they are relatively uniform in size, of about 100 nm, and carry selective protein cargo enriched for ATP synthase subunits. Remarkably, we further find that these MDVs harbor a functional ATP synthase complex. We demonstrate that these vesicles have a membrane potential, produce ATP, and seem to fuse with naive mitochondria. Our findings reveal a possible delivery mechanism of ATP-producing vesicles, which can potentially regenerate ATP-deficient mitochondria and may participate in organelle-to-organelle communication.
    Keywords:  ATP synthase; membrane potential; mitochondria; mitochondrial-derived vesicles; protein distribution
    DOI:  https://doi.org/10.15252/embr.202256114