bims-nimamd Biomed News
on Neuroimmunity and neuroinflammation in ageing and metabolic disease
Issue of 2023–03–12
39 papers selected by
Fawaz Alzaïd, Sorbonne Université



  1. J Immunol. 2023 Mar 01. 210(5): 517
      
    DOI:  https://doi.org/10.4049/jimmunol.2390001
  2. J Immunol. 2023 Mar 15. 210(6): 697
      
    DOI:  https://doi.org/10.4049/jimmunol.2390002
  3. Nat Commun. 2023 Mar 09. 14(1): 1293
      Systemic immunity supports lifelong brain function. Obesity posits a chronic burden on systemic immunity. Independently, obesity was shown as a risk factor for Alzheimer's disease (AD). Here we show that high-fat obesogenic diet accelerated recognition-memory impairment in an AD mouse model (5xFAD). In obese 5xFAD mice, hippocampal cells displayed only minor diet-related transcriptional changes, whereas the splenic immune landscape exhibited aging-like CD4+ T-cell deregulation. Following plasma metabolite profiling, we identified free N-acetylneuraminic acid (NANA), the predominant sialic acid, as the metabolite linking recognition-memory impairment to increased splenic immune-suppressive cells in mice. Single-nucleus RNA-sequencing revealed mouse visceral adipose macrophages as a potential source of NANA. In vitro, NANA reduced CD4+ T-cell proliferation, tested in both mouse and human. In vivo, NANA administration to standard diet-fed mice recapitulated high-fat diet effects on CD4+ T cells and accelerated recognition-memory impairment in 5xFAD mice. We suggest that obesity accelerates disease manifestation in a mouse model of AD via systemic immune exhaustion.
    DOI:  https://doi.org/10.1038/s41467-023-36759-8
  4. Science. 2023 Mar 10. 379(6636): 1062
      
    DOI:  https://doi.org/10.1126/science.adh4455
  5. Science. 2023 Mar 10. 379(6636): 1023-1030
      Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.
    DOI:  https://doi.org/10.1126/science.abq4822
  6. Nature. 2023 Mar 08.
      Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.
    DOI:  https://doi.org/10.1038/s41586-023-05770-w
  7. Nat Commun. 2023 Mar 04. 14(1): 1233
      Deletion of the conserved C-terminus of the Rothmund-Thomson syndrome helicase RECQ4 is highly tumorigenic. However, while the RECQ4 N-terminus is known to facilitate DNA replication initiation, the function of its C-terminus remains unclear. Using an unbiased proteomic approach, we identify an interaction between the RECQ4 N-terminus and the anaphase-promoting complex/cyclosome (APC/C) on human chromatin. We further show that this interaction stabilizes APC/C co-activator CDH1 and enhances APC/C-dependent degradation of the replication inhibitor Geminin, allowing replication factors to accumulate on chromatin. In contrast, the function is blocked by the RECQ4 C-terminus, which binds to protein inhibitors of APC/C. A cancer-prone, C-terminal-deleted RECQ4 mutation increases origin firing frequency, accelerates G1/S transition, and supports abnormally high DNA content. Our study reveals a role of the human RECQ4 C-terminus in antagonizing its N-terminus, thereby suppressing replication initiation, and this suppression is impaired by oncogenic mutations.
    DOI:  https://doi.org/10.1038/s41467-023-36968-1
  8. Nature. 2023 Mar 08.
      Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.
    DOI:  https://doi.org/10.1038/s41586-023-05778-2
  9. Nat Biotechnol. 2023 Mar 06.
      Recent studies have emphasized the importance of single-cell spatial biology, yet available assays for spatial transcriptomics have limited gene recovery or low spatial resolution. Here we introduce CytoSPACE, an optimization method for mapping individual cells from a single-cell RNA sequencing atlas to spatial expression profiles. Across diverse platforms and tissue types, we show that CytoSPACE outperforms previous methods with respect to noise tolerance and accuracy, enabling tissue cartography at single-cell resolution.
    DOI:  https://doi.org/10.1038/s41587-023-01697-9
  10. Nature. 2023 Mar 08.
      Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-β production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.
    DOI:  https://doi.org/10.1038/s41586-023-05720-6
  11. Nature. 2023 Mar 08.
      Extracellular deposition of amyloid-β as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-β or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.
    DOI:  https://doi.org/10.1038/s41586-023-05788-0
  12. Cell Metab. 2023 Mar 07. pii: S1550-4131(23)00038-4. [Epub ahead of print]35(3): 386-413
      Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.
    Keywords:  adipocytes; adipogenesis; adipose tissue plasticity; cellular heterogeneity; fibro-adipogenic progenitors; inflammation; macrophages; preadipocytes; single-cell sequencing; single-nuclei sequencing
    DOI:  https://doi.org/10.1016/j.cmet.2023.02.002
  13. J Immunol. 2023 Mar 01. pii: ji2200351. [Epub ahead of print]
      Cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, plays a crucial role in antiviral immunity, and its overactivation induces excess inflammation and tissue damage. Macrophage polarization is critically involved in inflammation; however, the role of cGAS in macrophage polarization during inflammation remains unclear. In this study, we demonstrated that cGAS was upregulated in the LPS-induced inflammatory response via the TLR4 pathway, and cGAS signaling was activated by mitochondria DNA in macrophages isolated from C57BL/6J mice. We further demonstrated that cGAS mediated inflammation by acting as a macrophage polarization switch, which promoted peritoneal macrophages and the bone marrow-derived macrophages to the inflammatory phenotype (M1) via the mitochondrial DNA-mTORC1 pathway. In vivo studies verified that deletion of Cgas alleviated sepsis-induced acute lung injury by promoting macrophages to shift from the M1 phenotype to the M2 phenotype. In conclusion, our study demonstrated that cGAS mediated inflammation by regulating macrophage polarization through the mTORC1 pathway, and it further provided a potential therapeutic strategy for inflammatory diseases, especially sepsis-induced acute lung injury.
    DOI:  https://doi.org/10.4049/jimmunol.2200351
  14. J Immunol. 2023 Mar 06. pii: ji2200596. [Epub ahead of print]
      NF-κB-inducing kinase (NIK), which is essential for the activation of the noncanonical NF-κB pathway, regulates diverse processes in immunity, development, and disease. Although recent studies have elucidated important functions of NIK in adaptive immune cells and cancer cell metabolism, the role of NIK in metabolic-driven inflammatory responses in innate immune cells remains unclear. In this study, we demonstrate that murine NIK-deficient bone marrow-derived macrophages exhibit defects in mitochondrial-dependent metabolism and oxidative phosphorylation, which impair the acquisition of a prorepair, anti-inflammatory phenotype. Subsequently, NIK-deficient mice exhibit skewing of myeloid cells characterized by aberrant eosinophil, monocyte, and macrophage cell populations in the blood, bone marrow, and adipose tissue. Furthermore, NIK-deficient blood monocytes display hyperresponsiveness to bacterial LPS and elevated TNF-α production ex vivo. These findings suggest that NIK governs metabolic rewiring, which is critical for balancing proinflammatory and anti-inflammatory myeloid immune cell function. Overall, our work highlights a previously unrecognized role for NIK as a molecular rheostat that fine-tunes immunometabolism in innate immunity, and suggests that metabolic dysfunction may be an important driver of inflammatory diseases caused by aberrant NIK expression or activity.
    DOI:  https://doi.org/10.4049/jimmunol.2200596
  15. Nature. 2023 Mar 08.
      Pathogen infection causes a stereotyped state of sickness that involves neuronally orchestrated behavioural and physiological changes1,2. On infection, immune cells release a 'storm' of cytokines and other mediators, many of which are detected by neurons3,4; yet, the responding neural circuits and neuro-immune interaction mechanisms that evoke sickness behaviour during naturalistic infections remain unclear. Over-the-counter medications such as aspirin and ibuprofen are widely used to alleviate sickness and act by blocking prostaglandin E2 (PGE2) synthesis5. A leading model is that PGE2 crosses the blood-brain barrier and directly engages hypothalamic neurons2. Here, using genetic tools that broadly cover a peripheral sensory neuron atlas, we instead identified a small population of PGE2-detecting glossopharyngeal sensory neurons (petrosal GABRA1 neurons) that are essential for influenza-induced sickness behaviour in mice. Ablating petrosal GABRA1 neurons or targeted knockout of PGE2 receptor 3 (EP3) in these neurons eliminates influenza-induced decreases in food intake, water intake and mobility during early-stage infection and improves survival. Genetically guided anatomical mapping revealed that petrosal GABRA1 neurons project to mucosal regions of the nasopharynx with increased expression of cyclooxygenase-2 after infection, and also display a specific axonal targeting pattern in the brainstem. Together, these findings reveal a primary airway-to-brain sensory pathway that detects locally produced prostaglandins and mediates systemic sickness responses to respiratory virus infection.
    DOI:  https://doi.org/10.1038/s41586-023-05796-0
  16. J Immunol. 2023 Feb 17. pii: ji2200646. [Epub ahead of print]
      Checkpoint blockade immunotherapy has failed in pancreatic cancer and other poorly responsive tumor types in part due to inadequate T cell priming. Naive T cells can receive costimulation not only via CD28 but also through TNF superfamily receptors that signal via NF-κB. Antagonists of the ubiquitin ligases cellular inhibitor of apoptosis protein (cIAP)1/2, also called second mitochondria-derived activator of caspases (SMAC) mimetics, induce degradation of cIAP1/2 proteins, allowing for the accumulation of NIK and constitutive, ligand-independent activation of alternate NF-κB signaling that mimics costimulation in T cells. In tumor cells, cIAP1/2 antagonists can increase TNF production and TNF-mediated apoptosis; however, pancreatic cancer cells are resistant to cytokine-mediated apoptosis, even in the presence of cIAP1/2 antagonism. Dendritic cell activation is enhanced by cIAP1/2 antagonism in vitro, and intratumoral dendritic cells show higher expression of MHC class II in tumors from cIAP1/2 antagonism-treated mice. In this study, we use in vivo mouse models of syngeneic pancreatic cancer that generate endogenous T cell responses ranging from moderate to poor. Across multiple models, cIAP1/2 antagonism has pleiotropic beneficial effects on antitumor immunity, including direct effects on tumor-specific T cells leading to overall increased activation, increased control of tumor growth in vivo, synergy with multiple immunotherapy modalities, and immunologic memory. In contrast to checkpoint blockade, cIAP1/2 antagonism does not increase intratumoral T cell frequencies. Furthermore, we confirm our previous findings that even poorly immunogenic tumors with a paucity of T cells can experience T cell-dependent antitumor immunity, and we provide transcriptional clues into how these rare T cells coordinate downstream immune responses.
    DOI:  https://doi.org/10.4049/jimmunol.2200646
  17. Nature. 2023 Mar 08.
      
    Keywords:  Cell biology; Immunology; Metabolism
    DOI:  https://doi.org/10.1038/d41586-023-00596-y
  18. Nat Aging. 2023 Feb;3(2): 157-161
      Mitochondrial dysfunction plays a central role in aging but the exact biological causes are still being determined. Here, we show that optogenetically increasing mitochondrial membrane potential during adulthood using a light-activated proton pump improves age-associated phenotypes and extends lifespan in C. elegans. Our findings provide direct causal evidence that rescuing the age-related decline in mitochondrial membrane potential is sufficient to slow the rate of aging and extend healthspan and lifespan.
    DOI:  https://doi.org/10.1038/s43587-022-00340-7
  19. Sci Adv. 2023 Mar 10. 9(10): eadd1101
      Lipofuscin is an autofluorescent (AF) pigment formed by lipids and misfolded proteins, which accumulates in postmitotic cells with advanced age. Here, we immunophenotyped microglia in the brain of old C57BL/6 mice (>18 months old) and demonstrate that in comparison to young mice, one-third of old microglia are AF, characterized by profound changes in lipid and iron content, phagocytic activity, and oxidative stress. Pharmacological depletion of microglia in old mice eliminated the AF microglia following repopulation and reversed microglial dysfunction. Age-related neurological deficits and neurodegeneration after traumatic brain injury (TBI) were attenuated in old mice lacking AF microglia. Furthermore, increased phagocytic activity, lysosomal burden, and lipid accumulation in microglia persisted for up to 1 year after TBI, were modified by APOE4 genotype, and chronically driven by phagocyte-mediated oxidative stress. Thus, AF may reflect a pathological state in aging microglia associated with increased phagocytosis of neurons and myelin and inflammatory neurodegeneration that can be further accelerated by TBI.
    DOI:  https://doi.org/10.1126/sciadv.add1101
  20. Science. 2023 Mar 10. 379(6636): 996-1003
      Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment.
    DOI:  https://doi.org/10.1126/science.abm3452
  21. Nature. 2023 Mar 08.
      
    Keywords:  Alzheimer's disease; Immunology; Neurodegeneration
    DOI:  https://doi.org/10.1038/d41586-023-00600-5
  22. Nat Commun. 2023 Mar 07. 14(1): 1269
      PIEZO proteins are unusually large, mechanically-activated trimeric ion channels. The central pore features structural similarities with the pore of other trimeric ion channels, including purinergic P2X receptors, for which optical control of channel gating has been previously achieved with photoswitchable azobenzenes. Extension of these chemical optogenetics methods to mechanically-activated ion channels would provide tools for specific manipulation of pore activity alternative to non-specific mechanical stimulations. Here we report a light-gated mouse PIEZO1 channel, in which an azobenzene-based photoswitch covalently tethered to an engineered cysteine, Y2464C, localized at the extracellular apex of the transmembrane helix 38, rapidly triggers channel gating upon 365-nm-light irradiation. We provide evidence that this light-gated channel recapitulates mechanically-activated PIEZO1 functional properties, and show that light-induced molecular motions are similar to those evoked mechanically. These results push the limits of azobenzene-based methods to unusually large ion channels and provide a simple stimulation means to specifically interrogate PIEZO1 function.
    DOI:  https://doi.org/10.1038/s41467-023-36931-0
  23. Nat Commun. 2023 Mar 04. 14(1): 1239
      Exosomes and extracellular vesicles (EV) are increasingly being explored as circulating biomarkers, but their heterogenous composition will likely mandate the development of multiplexed EV technologies. Iteratively multiplexed analyses of near single EVs have been challenging to implement beyond a few colors during spectral sensing. Here we developed a multiplexed analysis of EV technique (MASEV) to interrogate thousands of individual EVs during 5 cycles of multi-channel fluorescence staining for 15 EV biomarkers. Contrary to the common belief, we show that: several markers proposed to be ubiquitous are less prevalent than believed; multiple biomarkers concur in single vesicles but only in small fractions; affinity purification can lead to loss of rare EV subtypes; and deep profiling allows detailed analysis of EV, potentially improving the diagnostic content. These findings establish the potential of MASEV for uncovering fundamental EV biology and heterogeneity and increasing diagnostic specificity.
    DOI:  https://doi.org/10.1038/s41467-023-36932-z
  24. Nat Commun. 2023 Mar 10. 14(1): 1323
      Vascular endothelial cells (ECs) senescence correlates with the increase of cardiovascular diseases in ageing population. Although ECs rely on glycolysis for energy production, little is known about the role of glycolysis in ECs senescence. Here, we report a critical role for glycolysis-derived serine biosynthesis in preventing ECs senescence. During senescence, the expression of serine biosynthetic enzyme PHGDH is significantly reduced due to decreased transcription of the activating transcription factor ATF4, which leads to reduction of intracellular serine. PHGDH prevents premature senescence primarily by enhancing the stability and activity of pyruvate kinase M2 (PKM2). Mechanistically, PHGDH interacts with PKM2, which prevents PCAF-catalyzed PKM2 K305 acetylation and subsequent degradation by autophagy. In addition, PHGDH facilitates p300-catalyzed PKM2 K433 acetylation, which promotes PKM2 nuclear translocation and stimulates its activity to phosphorylate H3T11 and regulate the transcription of senescence-associated genes. Vascular endothelium-targeted expression of PHGDH and PKM2 ameliorates ageing in mice. Our findings reveal that enhancing serine biosynthesis could become a therapy to promote healthy ageing.
    DOI:  https://doi.org/10.1038/s41467-023-37094-8
  25. iScience. 2023 Mar 17. 26(3): 106150
      Glucose transporters are gatekeepers of cellular glucose metabolism. Understanding how their activity is regulated can provide insight into mechanisms of glucose homeostasis and diseases arising from dysregulation of glucose transport. Glucose stimulates endocytosis of the human glucose transporter GLUT1, but several important questions remain surrounding the intracellular trafficking itinerary of GLUT1. Here, we report that increased glucose availability triggers lysosomal trafficking of GLUT1 in HeLa cells, with a subpopulation of GLUT1 routed through ESCRT-associated late endosomes. This itinerary requires the arrestin-like protein TXNIP, which interacts with both clathrin and E3 ubiquitin ligases to promote GLUT1 lysosomal trafficking. We also find that glucose stimulates GLUT1 ubiquitylation, which promotes its lysosomal trafficking. Our results suggest that excess glucose first triggers TXNIP-mediated endocytosis of GLUT1 and, subsequently, ubiquitylation to promote lysosomal trafficking. Our findings underscore how complex coordination of multiple regulators is required for fine-tuning of GLUT1 stability at the cell surface.
    Keywords:  Biological sciences; Cell biology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2023.106150
  26. Nature. 2023 Mar 08.
      Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.
    DOI:  https://doi.org/10.1038/s41586-023-05787-1
  27. Cell Death Dis. 2023 Mar 07. 14(3): 184
      Deficiency of the histone H3K9 methyltransferase SETDB1 induces RIPK3-dependent necroptosis in mouse embryonic stem cells (mESCs). However, how necroptosis pathway is activated in this process remains elusive. Here we report that the reactivation of transposable elements (TEs) upon SETDB1 knockout is responsible for the RIPK3 regulation through both cis and trans mechanisms. IAPLTR2_Mm and MMERVK10c-int, both of which are suppressed by SETDB1-dependent H3K9me3, act as enhancer-like cis-regulatory elements and their RIPK3 nearby members enhance RIPK3 expression when SETDB1 is knockout. Moreover, reactivated endogenous retroviruses generate excessive viral mimicry, which promotes necroptosis mainly through Z-DNA-binding protein 1 (ZBP1). These results indicate TEs play an important role in regulating necroptosis.
    DOI:  https://doi.org/10.1038/s41419-023-05705-3
  28. Nature. 2023 Mar 07.
      
    Keywords:  Diabetes; Metabolism; Obesity; Public health
    DOI:  https://doi.org/10.1038/d41586-023-00676-z
  29. Nat Metab. 2023 Mar 06.
      Sympathetic neurons activate thermogenic adipocytes through release of catecholamine; however, the regulation of sympathetic innervation by thermogenic adipocytes is unclear. Here, we identify primary zinc ion (Zn) as a thermogenic adipocyte-secreted factor that promotes sympathetic innervation and thermogenesis in brown adipose tissue and subcutaneous white adipose tissue in male mice. Depleting thermogenic adipocytes or antagonizing β3-adrenergic receptor on adipocytes impairs sympathetic innervation. In obesity, inflammation-induced upregulation of Zn chaperone protein metallothionein-2 decreases Zn secretion from thermogenic adipocytes and leads to decreased energy expenditure. Furthermore, Zn supplementation ameliorates obesity by promoting sympathetic neuron-induced thermogenesis, while sympathetic denervation abrogates this antiobesity effect. Thus, we have identified a positive feedback mechanism for the reciprocal regulation of thermogenic adipocytes and sympathetic neurons. This mechanism is important for adaptive thermogenesis and could serve as a potential target for the treatment of obesity.
    DOI:  https://doi.org/10.1038/s42255-023-00751-9
  30. Cell Metab. 2023 Mar 07. pii: S1550-4131(23)00040-2. [Epub ahead of print]35(3): 438-455.e7
      Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
    Keywords:  ARC; Pomc; diet-induced obesity; estradiol; hypothalamus; leptin
    DOI:  https://doi.org/10.1016/j.cmet.2023.02.004
  31. J Exp Med. 2023 Apr 03. pii: e20220964. [Epub ahead of print]220(4):
      The proper regulation of IgE production safeguards against allergic disease, highlighting the importance of mechanisms that restrict IgE plasma cell (PC) survival. IgE PCs have unusually high surface B cell receptor (BCR) expression, yet the functional consequences of ligating this receptor are unknown. Here, we found that BCR ligation induced BCR signaling in IgE PCs followed by their elimination. In cell culture, exposure of IgE PCs to cognate antigen or anti-BCR antibodies induced apoptosis. IgE PC depletion correlated with the affinity, avidity, amount, and duration of antigen exposure and required the BCR signalosome components Syk, BLNK, and PLCγ2. In mice with a PC-specific impairment of BCR signaling, the abundance of IgE PCs was selectively increased. Conversely, BCR ligation by injection of cognate antigen or anti-IgE depleted IgE PCs. These findings establish a mechanism for the elimination of IgE PCs through BCR ligation. This has important implications for allergen tolerance and immunotherapy as well as anti-IgE monoclonal antibody treatments.
    DOI:  https://doi.org/10.1084/jem.20220964
  32. Cell Metab. 2023 Mar 07. pii: S1550-4131(23)00048-7. [Epub ahead of print]35(3): 383-385
      A recent report by Yang et al. in Cell demonstrates that faithful DNA double-strand breaks and repair cycles phenocopy many aspects of aging in mice. Whether this progeroid phenotype is caused by a loss of epigenetic information remains to be conclusively determined.
    DOI:  https://doi.org/10.1016/j.cmet.2023.02.012
  33. Cell Rep. 2023 Mar 09. pii: S2211-1247(23)00231-0. [Epub ahead of print]42(3): 112220
      AT-rich interaction domain 3 (ARID3) transcription factors are expressed in the nervous system, but their mechanisms of action are largely unknown. Here, we provide, in vivo, a genome-wide binding map for CFI-1, the sole C. elegans ARID3 ortholog. We identify 6,396 protein-coding genes as putative direct targets of CFI-1, most of which encode neuronal terminal differentiation markers. In head sensory neurons, CFI-1 directly activates multiple terminal differentiation genes, thereby acting as a terminal selector. In motor neurons, however, CFI-1 acts as a direct repressor, continuously antagonizing three transcriptional activators. By focusing on the glr-4/GRIK4 glutamate receptor locus, we identify proximal CFI-1 binding sites and histone methyltransferase activity as necessary for glr-4 repression. Rescue assays reveal functional redundancy between core and extended DNA-binding ARID domains and a strict requirement for REKLES, the ARID3 oligomerization domain. Altogether, this study uncovers cell-context-dependent mechanisms through which a single ARID3 protein controls the terminal differentiation of distinct neuron types.
    Keywords:  ARID proteins; ARID3; C. elegans; CFI-1; CP: Neuroscience; CRISPR-Cas9 gene editing; ChIP-seq; neuronal differentiation; transcription factors
    DOI:  https://doi.org/10.1016/j.celrep.2023.112220
  34. Nat Commun. 2023 Mar 08. 14(1): 1280
      Living things benefit from exquisite molecular sensitivity in many of their key processes, including DNA replication, transcription and translation, chemical sensing, and morphogenesis. At thermodynamic equilibrium, the basic biophysical mechanism for sensitivity is cooperative binding, for which it can be shown that the Hill coefficient, a sensitivity measure, cannot exceed the number of binding sites. Generalizing this fact, we find that for any kinetic scheme, at or away from thermodynamic equilibrium, a very simple structural quantity, the size of the support of a perturbation, always limits the effective Hill coefficient. We show how this bound sheds light on and unifies diverse sensitivity mechanisms, including kinetic proofreading and a nonequilibrium Monod-Wyman-Changeux (MWC) model proposed for the E. coli flagellar motor switch, representing in each case a simple, precise bridge between experimental observations and the models we write down. In pursuit of mechanisms that saturate the support bound, we find a nonequilibrium binding mechanism, nested hysteresis, with sensitivity exponential in the number of binding sites, with implications for our understanding of models of gene regulation and the function of biomolecular condensates.
    DOI:  https://doi.org/10.1038/s41467-023-36705-8
  35. Nat Commun. 2023 Mar 04. 14(1): 1235
      Fibroblast growth factor-18 (FGF18) has diverse organ development and damage repair roles. However, its role in cardiac homeostasis following hypertrophic stimulation remains unknown. Here we investigate the regulation and function of the FGF18 in pressure overload (PO)-induced pathological cardiac hypertrophy. FGF18 heterozygous (Fgf18+/-) and inducible cardiomyocyte-specific FGF18 knockout (Fgf18-CKO) male mice exposed to transverse aortic constriction (TAC) demonstrate exacerbated pathological cardiac hypertrophy with increased oxidative stress, cardiomyocyte death, fibrosis, and dysfunction. In contrast, cardiac-specific overexpression of FGF18 alleviates hypertrophy, decreased oxidative stress, attenuates cardiomyocyte apoptosis, and ameliorates fibrosis and cardiac function. Tyrosine-protein kinase FYN (FYN), the downstream factor of FGF18, was identified by bioinformatics analysis, LC-MS/MS and experiment validation. Mechanistic studies indicate that FGF18/FGFR3 promote FYN activity and expression and negatively regulate NADPH oxidase 4 (NOX4), thereby inhibiting reactive oxygen species (ROS) generation and alleviating pathological cardiac hypertrophy. This study uncovered the previously unknown cardioprotective effect of FGF18 mediated by the maintenance of redox homeostasis through the FYN/NOX4 signaling axis in male mice, suggesting a promising therapeutic target for the treatment of cardiac hypertrophy.
    DOI:  https://doi.org/10.1038/s41467-023-36895-1
  36. Science. 2023 Mar 10. 379(6636): 982-983
      Experimental virology can inform strategic monitoring for new viruses in humans.
    DOI:  https://doi.org/10.1126/science.ade6985
  37. J Immunol. 2023 Feb 17. pii: ji2200478. [Epub ahead of print]
      The proinflammatory microRNA-155 (miR-155) is highly expressed in the serum and CNS lesions of patients with multiple sclerosis (MS). Global knockout (KO) of miR-155 in mice confers resistance to a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), by reducing the encephalogenic potential of CNS-infiltrating Th17 T cells. However, cell-intrinsic roles for miR-155 during EAE have not been formally determined. In this study, we use single-cell RNA sequencing and cell-specific conditional miR-155 KOs to determine the importance of miR-155 expression in distinct immune cell populations. Time-course single-cell sequencing revealed reductions in T cells, macrophages, and dendritic cells (DCs) in global miR-155 KO mice compared with wild-type controls at day 21 after EAE induction. Deletion of miR-155 in T cells, driven by CD4 Cre, significantly reduced disease severity similar to global miR-155 KOs. CD11c Cre-mediated deletion of miR-155 in DCs also resulted in a modest yet significant reduction in the development of EAE, with both T cell- and DC-specific KOs showing a reduction in Th17 T cell infiltration into the CNS. Although miR-155 is highly expressed in infiltrating macrophages during EAE, deletion of miR-155 using LysM Cre did not impact disease severity. Taken together, these data show that although miR-155 is highly expressed in most infiltrating immune cells, miR-155 has distinct roles and requirements depending on the cell type, and we have demonstrated this using the gold standard conditional KO approach. This provides insights into which functionally relevant cell types should be targeted by the next generation of miRNA therapeutics.
    DOI:  https://doi.org/10.4049/jimmunol.2200478