bims-nimamd Biomed News
on Neuroimmunity and neuroinflammation in ageing and metabolic disease
Issue of 2022‒02‒13
28 papers selected by
Fawaz Alzaïd
Sorbonne Université


  1. Mol Med. 2022 Feb 05. 28(1): 18
      BACKGROUND: Although type 1 diabetes (T1D) is typically described as a T cell-mediated autoimmune disease, increasing evidence for a role of B cells has emerged. However, the pivotal disease-relevant B cell subset and its contribution to islet autoimmunity remain elusive.METHODS: The frequencies and phenotypic characteristics of circulating B cell subsets were analyzed using flow cytometry in individuals with new-onset T1D, long-term T1D, type 2 diabetes, and nondiabetic controls, and also in a prospective cohort of patients receiving mesenchymal stromal cell (MSC) transplantation. NOD mice and adoptive transfer assay were used to dissect the role of the certain B cell subset in disease progression. An in-vitro coculture system of islets with immune cells was established to examine the response against islets and the underlying mechanisms.
    RESULTS: We identified that plasmablasts, a B cell subset at the antibody-secreting stage, were significantly increased and correlated with the deterioration of beta cell function in patients with new-onset T1D. Further, a fall of plasmablast number was associated with the preservation of beta cell function in patients who received MSC transplantation after 3 months of follow-up. Meanwhile, a gradual increase of plasmablasts in pancreatic lymph nodes during the natural progression of insulitis was observed in non-obese diabetic (NOD) mice; adoptive transfer of plasmablasts together with T cells from NOD mice accelerated diabetes onset in NOD/SCID recipients.
    CONCLUSIONS: Our study revealed that plasmablasts may function as antigen-presenting cells and promote the activation and proinflammatory response of CD4+ T cells, further contributing to the T cell-mediated beta cell destruction. Our results provide insights into the pathogenic role of plasmablasts in islet autoimmunity and may offer new translational strategies for inhibiting T1D development.
    Keywords:  Autoimmunity; B cell subset; Plasmablast; T cell; Type 1 diabetes
    DOI:  https://doi.org/10.1186/s10020-022-00447-y
  2. J Immunol. 2022 Feb 11. pii: ji2100522. [Epub ahead of print]
      Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes that recognize microbial vitamin B metabolites and have emerging roles in infectious disease, autoimmunity, and cancer. Although MAIT cells are identified by a semi-invariant TCR, their phenotypic and functional heterogeneity is not well understood. Here we present an integrated single cell transcriptomic analysis of over 76,000 human MAIT cells during early and prolonged Ag-specific activation with the MR1 ligand 5-OP-RU and nonspecific TCR stimulation. We show that MAIT cells span a broad range of homeostatic, effector, helper, tissue-infiltrating, regulatory, and exhausted phenotypes, with distinct gene expression programs associated with CD4+ or CD8+ coexpression. During early activation, MAIT cells rapidly adopt a cytotoxic phenotype characterized by high expression of GZMB, IFNG and TNF In contrast, prolonged stimulation induces heterogeneous states defined by proliferation, cytotoxicity, immune modulation, and exhaustion. We further demonstrate a FOXP3 expressing MAIT cell subset that phenotypically resembles conventional regulatory T cells. Moreover, scRNAseq-defined MAIT cell subpopulations were also detected in individuals recently exposed to Mycobacterium tuberculosis, confirming their presence during human infection. To our knowledge, our study provides the first comprehensive atlas of human MAIT cells in activation conditions and defines substantial functional heterogeneity, suggesting complex roles in health and disease.
    DOI:  https://doi.org/10.4049/jimmunol.2100522
  3. Sci Adv. 2022 Feb 11. 8(6): eabm6393
      The most common genetic risk factors for Parkinson's disease (PD) are a set of heterozygous mutant (MT) alleles of the GBA1 gene that encodes β-glucocerebrosidase (GCase), an enzyme normally trafficked through the ER/Golgi apparatus to the lysosomal lumen. We found that half of the GCase in lysosomes from postmortem human GBA-PD brains was present on the lysosomal surface and that this mislocalization depends on a pentapeptide motif in GCase used to target cytosolic protein for degradation by chaperone-mediated autophagy (CMA). MT GCase at the lysosomal surface inhibits CMA, causing accumulation of CMA substrates including α-synuclein. Single-cell transcriptional analysis and proteomics of brains from GBA-PD patients confirmed reduced CMA activity and proteome changes comparable to those in CMA-deficient mouse brain. Loss of the MT GCase CMA motif rescued primary substantia nigra dopaminergic neurons from MT GCase-induced neuronal death. We conclude that MT GBA1 alleles block CMA function and produce α-synuclein accumulation.
    DOI:  https://doi.org/10.1126/sciadv.abm6393
  4. FASEB J. 2022 Mar;36(3): e22185
      FGF19/FGF15 is an endocrine regulator of hepatic bile salt and lipid metabolism, which has shown promising effects in the treatment of NASH in clinical trials. FGF19/15 is transcribed and released from enterocytes of the small intestine into enterohepatic circulation in response to bile-induced FXR activation. Previously, the TSS of FGF19 was identified to bind Wnt-regulated TCF7L2/encoded transcription factor TCF4 in colorectal cancer cells. Impaired Wnt signaling and specifical loss of function of its coreceptor LRP6 have been associated with NASH. We, therefore, examined if TCF7L2/TCF4 upregulates Fgf19 in the small intestine and restrains NASH through gut-liver crosstalk. We examined the mice globally overexpressing, haploinsufficient, and conditional knockout models of TCF7L2 in the intestinal epithelium. The TCF7L2+/- mice exhibited increased plasma bile salts and lipids and developed diet-induced fatty liver disease while mice globally overexpressing TCF7L2 were protected against these traits. Comprehensive in vivo analysis revealed that TCF7L2 transcriptionally upregulates FGF15 in the gut, leading to reduced bile synthesis and diminished intestinal lipid uptake. Accordingly, VilinCreert2 ; Tcf7L2fl/fl mice showed reduced Fgf19 in the ileum, and increased plasma bile. The global overexpression of TCF7L2 in mice with metabolic syndrome-linked LRP6R611C substitution rescued the fatty liver and fibrosis in the latter. Strikingly, the hepatic levels of TCF4 were reduced and CYP7a1 was increased in human NASH, indicating the relevance of TCF4-dependent regulation of bile synthesis to human disease. These studies identify the critical role of TCF4 as an upstream regulator of the FGF15-mediated gut-liver crosstalk that maintains bile and liver triglyceride homeostasis.
    Keywords:  Fgf19; NASH; lipid absorption; tcf7l2
    DOI:  https://doi.org/10.1096/fj.202101607R
  5. Cell. 2022 Feb 03. pii: S0092-8674(22)00068-X. [Epub ahead of print]
      Rapid neutrophil recruitment to sites of inflammation is crucial for innate immune responses. Here, we reveal that the G-protein-coupled receptor GPR35 is upregulated in activated neutrophils, and it promotes their migration. GPR35-deficient neutrophils are less recruited from blood vessels into inflamed tissue, and the mice are less efficient in clearing peritoneal bacteria. Using a bioassay, we find that serum and activated platelet supernatant stimulate GPR35, and we identify the platelet-derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) as a GPR35 ligand. GPR35 function in neutrophil recruitment is strongly dependent on platelets, with the receptor promoting transmigration across platelet-coated endothelium. Mast cells also attract GPR35+ cells via 5-HIAA. Mice deficient in 5-HIAA show a loss of GPR35-mediated neutrophil recruitment to inflamed tissue. These findings identify 5-HIAA as a GPR35 ligand and neutrophil chemoattractant and establish a role for platelet- and mast cell-produced 5-HIAA in cell recruitment to the sites of inflammation and bacterial clearance.
    Keywords:  5-HIAA; GPCRs; GPR35; SSRI; inflammation; mast cells; migration; neutrophil; platelets; serotonin metabolite
    DOI:  https://doi.org/10.1016/j.cell.2022.01.010
  6. Immunol Rev. 2022 Feb 10.
      Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
    Keywords:  MHC; TCR; coinhibition; costimulation; cytokines
    DOI:  https://doi.org/10.1111/imr.13071
  7. Immunity. 2022 Feb 08. pii: S1074-7613(21)00550-1. [Epub ahead of print]55(2): 254-271.e7
      Allergic immunity is orchestrated by group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells prominently arrayed at epithelial- and microbial-rich barriers. However, ILC2s and Th2 cells are also present in fibroblast-rich niches within the adventitial layer of larger vessels and similar boundary structures in sterile deep tissues, and it remains unclear whether they undergo dynamic repositioning during immune perturbations. Here, we used thick-section quantitative imaging to show that allergic inflammation drives invasion of lung and liver non-adventitial parenchyma by ILC2s and Th2 cells. However, during concurrent type 1 and type 2 mixed inflammation, IFNγ from broadly distributed type 1 lymphocytes directly blocked both ILC2 parenchymal trafficking and subsequent cell survival. ILC2 and Th2 cell confinement to adventitia limited mortality by the type 1 pathogen Listeria monocytogenes. Our results suggest that the topography of tissue lymphocyte subsets is tightly regulated to promote appropriately timed and balanced immunity.
    Keywords:  3D imaging; ILC2; Th2; allergic immunity; interferon gamma; lymphocyte niches; mixed inflammation; tissue immunology; type 2 immunity
    DOI:  https://doi.org/10.1016/j.immuni.2021.12.014
  8. JCI Insight. 2022 Feb 08. pii: e149870. [Epub ahead of print]7(3):
    CAPSys Study Group
      Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8-/- mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain.
    Keywords:  Inflammation; Innate immunity; Neutrophils; Proteases; Pulmonology
    DOI:  https://doi.org/10.1172/jci.insight.149870
  9. J Clin Invest. 2022 Feb 10. pii: e155224. [Epub ahead of print]
      The functional integrity of CD8+ T cells is tightly coupled to metabolic reprogramming, but how oxidative stress directs CD8+ T cell metabolic fitness in the tumor microenvironment (TME) remains elusive. Here, we report that SUMO-specific protease 7 (SENP7) senses oxidative stress to maintain the CD8+ T cell metabolic state and antitumor functions. SENP7-deficient CD8+ T cells exhibited decreased glycolysis and oxidative phosphorylation, resulting in attenuated proliferation in vitro and dampened antitumor functions in vivo. Mechanistically, CD8+ T cell-derived reactive oxygen species (ROS) triggered cytosolic SENP7-mediated PTEN deSUMOylation, thereby promoting PTEN degradation and preventing PTEN-dependent metabolic defects. Importantly, lowering T cell-intrinsic ROS restricted SENP7 cytosolic translocation and repressed CD8+ T cell metabolic and functional activity in human colorectal cancer samples. Our findings reveal that SENP7, as an oxidative stress sensor, sustains CD8+ T cell metabolic fitness and effector functions and unveil an oxidative stress-sensing machinery in tumor-infiltrating CD8+ T cells.
    Keywords:  Adaptive immunity; Cancer immunotherapy; Immunology; Metabolism; T cells
    DOI:  https://doi.org/10.1172/JCI155224
  10. J Immunol. 2022 Feb 11. pii: ji2100767. [Epub ahead of print]
      Idiopathic pulmonary fibrosis (IPF) is an irreversible, age-related diffuse parenchymal lung disease of poorly defined etiology. Many patients with IPF demonstrate distinctive lymphocytic interstitial infiltrations within remodeled lung tissue with uncertain pathogenetic relevance. Histopathological examination of explant lung tissue of patients with IPF revealed accentuated lymphoplasmacellular accumulations in close vicinity to, or even infiltrating, remodeled lung tissue. Similarly, we found significant accumulations of B cells interfused with T cells within remodeled lung tissue in two murine models of adenoviral TGF-β1 or bleomycin (BLM)-induced lung fibrosis. Such B cell accumulations coincided with significantly increased lung collagen deposition, lung histopathology, and worsened lung function in wild-type (WT) mice. Surprisingly, B cell-deficient µMT knockout mice exhibited similar lung tissue remodeling and worsened lung function upon either AdTGF-β1 or BLM as for WT mice. Comparative transcriptomic profiling of sorted B cells collected from lungs of AdTGF-β1- and BLM-exposed WT mice identified a large set of commonly regulated genes, but with significant enrichment observed for Gene Ontology terms apparently not related to lung fibrogenesis. Collectively, although we observed B cell accumulations in lungs of IPF patients as well as two experimental models of lung fibrosis, comparative profiling of characteristic features of lung fibrosis between WT and B cell-deficient mice did not support a major involvement of B cells in lung fibrogenesis in mice.
    DOI:  https://doi.org/10.4049/jimmunol.2100767
  11. JCI Insight. 2022 Feb 08. pii: e153136. [Epub ahead of print]
      BACKGROUND: Pathophysiology of type 1 diabetes (T1D) is illustrated by pancreatic islet infiltration of inflammatory lymphocytes, including CD8+ T-cells; however, the molecular factors mediating their recruitment remain unknown. We hypothesized that single-cell RNA-sequencing (scRNA-Seq) analysis of immune cell populations isolated from islets of non-obese diabetic (NOD) mice captured gene expression dynamics providing critical insight into autoimmune diabetes pathogenesis.METHODS: Pancreatic sections from human donors were investigated, including T1D subjects, auto-antibody-positive (aAb+), and non-diabetic controls. Immunohistochemistry was performed to assess islet hormones, and both novel and canonical immune-cell markers that were identified from state-of-the-art workflows after reanalyzing murine scRNA-seq datasets.
    RESULTS: Computational workflows identified Cadm1-mediated binding among the most significant intercellular interactions among all cell clusters as well as Cadm1 enrichment in macrophages and dendritic cells from pancreata of NOD mice. Immunostaining of human pancreata revealed an increased number of CADM1+GCG+ cells adjacent to CD8+ T-cells in sections from T1D and aAb+ donors compared to non-diabetic subjects. Numbers of CADM1+CD68+ peri-islet myeloid cells adjacent to CD8+ T-cells were also increased in pancreatic sections from both T1D and aAb+ donors compared to non-diabetic subjects.
    CONCLUSION: Increased detection of CADM1+ cells adjacent to CD8+ T-cells in pancreatic sections of T1D and aAb+ human subjects validated workflows, and indicates CADM1-mediated intercellular contact may facilitate islet infiltration of cytotoxic T lymphocytes and serve as a potential therapeutic target for preventing T1D pathogenesis.
    FUNDING: The Johns Hopkins All Children's Foundation IRG Program, NSFC (82071326) and DFG (431549029-SFB 1451, EXC 2030-390661388, and 411422114-GRK 2550).
    Keywords:  Autoimmune diseases; Autoimmunity; Cell migration/adhesion; Diabetes; Endocrinology
    DOI:  https://doi.org/10.1172/jci.insight.153136
  12. Nat Genet. 2022 Feb;54(2): 202-212
      CCCTC-binding factor (CTCF) is critical to three-dimensional genome organization. Upon differentiation, CTCF insulates active and repressed genes within Hox gene clusters. We conducted a genome-wide CRISPR knockout (KO) screen to identify genes required for CTCF-boundary activity at the HoxA cluster, complemented by biochemical approaches. Among the candidates, we identified Myc-associated zinc-finger protein (MAZ) as a cofactor in CTCF insulation. MAZ colocalizes with CTCF at chromatin borders and, similar to CTCF, interacts with the cohesin subunit RAD21. MAZ KO disrupts gene expression and local contacts within topologically associating domains. Similar to CTCF motif deletions, MAZ motif deletions lead to derepression of posterior Hox genes immediately after CTCF boundaries upon differentiation, giving rise to homeotic transformations in mouse. Thus, MAZ is a factor contributing to appropriate insulation, gene expression and genomic architecture during development.
    DOI:  https://doi.org/10.1038/s41588-021-01008-5
  13. Science. 2022 Feb 11. 375(6581): 619-620
      p53 mediates epithelial cell migration and leader cell elimination during wound repair.
    DOI:  https://doi.org/10.1126/science.abn7411
  14. J Biol Chem. 2022 Feb 04. pii: S0021-9258(22)00125-9. [Epub ahead of print] 101685
      Most mammalian phospholipids contain a saturated fatty acid at the sn-1 carbon atom and an unsaturated fatty acid at the sn-2 carbon atom of the glycerol backbone group. While the sn-2 linked chains undergo extensive remodeling by deacylation and reacylation (Lands cycle), it is not known how the composition of saturated fatty acids is controlled at the sn-1 position. Here we demonstrate that lysophosphatidylglycerol acyltransferase 1 (LPGAT1) is an sn-1 specific acyltransferase that controls the stearate/palmitate ratio of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Bacterially expressed murine LPGAT1 transferred saturated acyl-CoAs specifically into the sn-1 position of lysophosphatidylethanolamine (LPE) rather than lysophosphatidylglycerol, and preferred stearoyl-CoA over palmitoyl-CoA as substrate. In addition, genetic ablation of LPGAT1 in mice abolished 1-LPE:stearoyl-CoA acyltransferase activity and caused a shift from stearate to palmitate species in PE, dimethyl-PE, and PC. LPGAT1 knockout mice were leaner and had a shorter life span than their littermate controls. Finally, we show that total lipid synthesis was reduced in isolated hepatocytes of LPGAT1 knockout mice. Thus, we conclude that LPGAT1 is an sn-1 specific LPE acyltransferase that controls the stearate/palmitate homeostasis of PE and the metabolites of the PE methylation pathway and that LPGAT1 plays a central role in the regulation of lipid biosynthesis with implications for body fat content and longevity.
    Keywords:  Acyltransferase; Metabolism; Molecular species; Obesity; Phospholipid
    DOI:  https://doi.org/10.1016/j.jbc.2022.101685
  15. JCI Insight. 2022 Feb 08. pii: e151420. [Epub ahead of print]7(3):
      Immune cells express an array of inhibitory checkpoint receptors that are upregulated upon activation and limit tissue damage associated with excessive response to pathogens or allergens. Mouse leukocyte immunoglobulin like receptor B4 (LILRB4), also known as glycoprotein 49B (gp49B), is an inhibitory checkpoint receptor constitutively expressed in myeloid cells and upregulated in B cells, T cells, and NK cells upon activation. Here, we report that expression of LILRB4, which binds Zika virus (ZIKV), was increased in microglia and myeloid cells infiltrating the brains of neonatal mice with ZIKV-associated meningoencephalitis. Importantly, while C57BL/6 mice developed transient neurological symptoms but survived infection, mice lacking LILRB4/gp49B (LILRB4 KO) exhibited more severe signs of neurological disease and succumbed to disease. Their brains showed increased cellular infiltration but reduced control of viral burden. The reduced viral clearance was associated with altered NK cell function in the absence of LILRB4/gp49B. In naive animals, this manifested as reduced granzyme B responses to stimulation, but in ZIKV-infected animals, NK cells showed phenotypic changes that suggested altered maturation, diminished glucose consumption, reduced IFN-γ and granzyme B production, and impaired cytotoxicity. Together, our data reveal LILRB4/gp49B as an important regulator of NK cell function during viral infections.
    Keywords:  Immunology; Infectious disease; NK cells
    DOI:  https://doi.org/10.1172/jci.insight.151420
  16. Nat Commun. 2022 Feb 08. 13(1): 735
      Insulin receptor (Insr) protein is present at higher levels in pancreatic β-cells than in most other tissues, but the consequences of β-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in β-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined β-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout β-cells from female, but not male mice, whereas only male βInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female βInsrKO and βInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter β-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include β-cell insulin resistance, which predicts that β-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female βInsrKO and βInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of β-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that β-cell insulin resistance in the form of reduced β-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.
    DOI:  https://doi.org/10.1038/s41467-022-28039-8
  17. Cell Rep. 2022 Feb 08. pii: S2211-1247(22)00057-2. [Epub ahead of print]38(6): 110341
      The tetravalent dengue vaccine candidate, TAK-003, induces a functional antibody response, but the titers of antibodies against the four serotypes of the dengue virus (DENV) can vary. Here, through a transcriptomic analysis on whole blood collected from recipients of a two-dose schedule of TAK-003, we examine gene expression, splicing, and transcript isoform-level changes for both protein-coding and noncoding genes to broaden our understanding of the immune response. Our analysis reveals a dynamic pattern of vaccine-associated regulation of long noncoding RNAs (lncRNAs), differential splicing of interferon-stimulated gene exons, and gene expression changes related to multiple signaling pathways that detect viral infection. Co-expression networks isolate immune cell-type-related and interferon-response modules that represent specific biological processes that correlate with more robust antibody responses. These data provide insights into the early determinants of the variable immune response to the vaccine, highlighting the significance of splicing and isoform-level gene regulatory mechanisms in defining vaccine immunogenicity.
    Keywords:  gene correlation networks; live attenuated dengue virus vaccine; long noncoding RNA; modular transcriptional repertoire; splicing; transcriptome
    DOI:  https://doi.org/10.1016/j.celrep.2022.110341
  18. Front Immunol. 2021 ;12 797302
      Introduction: Short chain fatty acids (SCFA) are gut microbiota-derived metabolites that contribute to the gut-brain axis and may impact stroke outcomes following gut dysbiosis. We evaluated plasma SCFA concentrations against stroke severity parameters and identified SCFA-associated protein networks.Methods: The Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC), a continuously enrolling tissue bank, was used to obtain stroke samples. Arterial blood distal and proximal to the thrombus was obtained from Acute Ischemic Stroke (AIS) Patients (n=53) during thrombectomy. Patient demographics, stroke presentation and outcome parameters were reported. The SCFAs were isolated from proximal plasma via chemical derivatization UHPLC coupled tandem mass spectrometry using electrospray ionization and multiple reaction monitoring. Proteomic levels for 184 cardioembolic and inflammatory proteins was quantified from systemic and intracranial plasma by Olink. Arterial blood from cerebrovascular patients undergoing elective neurointerventional procedures was used as controls.
    Results: Acetate positively correlated with time from last known normal (LKN) and was significantly lower in stroke patients compared to control. Isobutyrate, Butyrate and 2-Methylbutyrate negatively correlated with %ΔNIHSS. Isobutyrate and 2-Methylbutyrate positively correlated with NIHSS discharge. SCFA concentrations were not associated with NIHSS admission, infarct volume, or edema volume. Multiple SCFAs positively associated with systemic and pro-inflammatory cytokines, most notably IL-6, TNF-α, VCAM1, IL-17, and MCP-1.
    Conclusions: Plasma SCFA concentrations taken at time of stroke are not associated with stroke severity at presentation. However, higher levels of SCFAs at the time of stroke are associated with increased markers of inflammation, less recovery from admission to discharge, and worse symptom burden at discharge.
    Keywords:  brain ischemia; cytokine - immunological terms; inflammation; microbiome & dysbiosis; neuroimmunology of the gut
    DOI:  https://doi.org/10.3389/fimmu.2021.797302
  19. Hum Mol Genet. 2022 Feb 08. pii: ddab366. [Epub ahead of print]
      Hypothalamic hamartoma with gelastic seizures is a well-established cause of drug-resistant epilepsy in early life. The development of novel surgical techniques has permitted the genomic interrogation of hypothalamic hamartoma tissue. This has revealed causative mosaic variants within GLI3, OFD1, and other key regulators of the sonic-hedgehog pathway in a minority of cases. Sonic-hedgehog signalling proteins localise to the cellular organelle primary cilia. We therefore explored the hypothesis that cilia gene variants may underlie hitherto unsolved cases of sporadic hypothalamic hamartoma. We performed high depth exome sequencing and chromosomal microarray on surgically resected hypothalamic hamartoma tissue and paired leukocyte-derived DNA from 27 patients. We searched for both germline and somatic variants under both dominant and bi-allelic genetic models. In hamartoma-derived DNA of seven patients we identified bi-allelic (one germline, one somatic) variants within one of four cilia genes-DYNC2I1, DYNC2H1, IFT140 or SMO. In eight patients we identified single somatic variants in the previously established hypothalamic hamartoma disease genes GLI3 or OFD1. Overall, we established a plausible molecular cause for 15/27 (56%) patients. Here we expand the genetic architecture beyond single variants within dominant disease genes that cause sporadic hypothalamic hamartoma to bi-allelic (one germline/one somatic) variants, implicate three novel cilia genes, and re-conceptualize the disorder as a ciliopathy.
    DOI:  https://doi.org/10.1093/hmg/ddab366
  20. Science. 2022 Feb 11. 375(6581): eabi5965
      Dendritic cells (DCs) are crucial for initiating adaptive immune responses. However, the factors that control DC positioning and homeostasis are incompletely understood. We found that type-2 conventional DCs (cDC2s) in the spleen depend on Gα13 and adhesion G protein-coupled receptor family member-E5 (Adgre5, or CD97) for positioning in blood-exposed locations. CD97 function required its autoproteolytic cleavage. CD55 is a CD97 ligand, and cDC2 interaction with CD55-expressing red blood cells (RBCs) under shear stress conditions caused extraction of the regulatory CD97 N-terminal fragment. Deficiency in CD55-CD97 signaling led to loss of splenic cDC2s into the circulation and defective lymphocyte responses to blood-borne antigens. Thus, CD97 mechanosensing of RBCs establishes a migration and gene expression program that optimizes the antigen capture and presentation functions of splenic cDC2s.
    DOI:  https://doi.org/10.1126/science.abi5965
  21. Front Immunol. 2021 ;12 816509
      Fibrosis is a prominent feature of chronic allograft rejection, caused by an excessive production of matrix proteins, including collagen-1. Several cell types produce collagen-1, including mesenchymal fibroblasts and cells of hematopoietic origin. Here, we sought to determine whether tissue-resident donor-derived cells or allograft-infiltrating recipient-derived cells are responsible for allograft fibrosis, and whether hematopoietic cells contribute to collagen production. A fully MHC-mismatched mouse heterotopic heart transplantation model was used, with transient depletion of CD4+ T cells to prevent acute rejection. Collagen-1 was selectively knocked out in recipients or donors. In addition, collagen-1 was specifically deleted in hematopoietic cells. Tissue-resident macrophages were depleted using anti-CSF1R antibody. Allograft fibrosis and inflammation were quantified 20 days post-transplantation. Selective collagen-1 knock-out in recipients or donors showed that tissue-resident cells from donor hearts, but not infiltrating recipient-derived cells, are responsible for production of collagen-1 in allografts. Cell-type-specific knock-out experiments showed that hematopoietic tissue-resident cells in donor hearts substantially contributed to graft fibrosis. Tissue resident macrophages, however, were not responsible for collagen-production, as their deletion worsened allograft fibrosis. Donor-derived cells including those of hematopoietic origin determine allograft fibrosis, making them attractive targets for organ preconditioning to improve long-term transplantation outcomes.
    Keywords:  allograft fibrosis; chronic rejection; collagen-1; fibrocytes; transplantation
    DOI:  https://doi.org/10.3389/fimmu.2021.816509
  22. Diabetes. 2022 Feb 08. pii: db210839. [Epub ahead of print]
      Diabetes-related complications reflect longstanding damage to small and large vessels throughout the body. In addition to the duration of diabetes and poor glycemic control, genetic factors are important contributors to the variability in the development of vascular complications. Early heritability studies found strong familial clustering of both macrovascular and microvascular complications. However, they were limited by small sample sizes and large phenotypic heterogeneity, leading to less accurate estimates. We take advantage of two independent studies-UK Biobank and the Action to Control Cardiovascular Risk in Diabetes trial to survey the SNP-heritability for diabetes microvascular (diabetic kidney disease and diabetic retinopathy) and macrovascular (cardiovascular events) complications. Heritability for diabetic kidney disease was estimated at 29%. Heritability estimates for microalbuminuria ranged from 24% to 60% and was 41% for macroalbuminuria. Heritability estimates of diabetic retinopathy ranged from 6% to 33%, depending on the phenotype definition. More severe diabetes retinopathy possessed higher genetic contributions. We show, for the first time, that rare variants account for much of the heritability of diabetic retinopathy. This study suggests that a large portion of the genetic risk of diabetes complications is yet to be discovered and emphasizes the need for additional genetic studies of diabetes complications.
    DOI:  https://doi.org/10.2337/db21-0839
  23. Nat Rev Endocrinol. 2022 Feb 10.
      Organismal ageing is accompanied by progressive loss of cellular function and systemic deterioration of multiple tissues, leading to impaired function and increased vulnerability to death. Mitochondria have become recognized not merely as being energy suppliers but also as having an essential role in the development of diseases associated with ageing, such as neurodegenerative and cardiovascular diseases. A growing body of evidence suggests that ageing and age-related diseases are tightly related to an energy supply and demand imbalance, which might be alleviated by a variety of interventions, including physical activity and calorie restriction, as well as naturally occurring molecules targeting conserved longevity pathways. Here, we review key historical advances and progress from the past few years in our understanding of the role of mitochondria in ageing and age-related metabolic diseases. We also highlight emerging scientific innovations using mitochondria-targeted therapeutic approaches.
    DOI:  https://doi.org/10.1038/s41574-021-00626-7
  24. Circ Genom Precis Med. 2022 Feb 07. CIRCGEN121003500
      BACKGROUND: Congenital heart disease (CHD) is the most common anomaly at birth, with a prevalence of ≈1%. While infants born to mothers with diabetes or obesity have a 2- to 3-fold increased incidence of CHD, the cause of the increase is unknown. Damaging de novo variants (DNV) in coding regions are more common among patients with CHD, but genome-wide rates of coding and noncoding DNVs associated with these prenatal exposures have not been studied in patients with CHD.METHODS: DNV frequencies were determined for 1812 patients with CHD who had whole-genome sequencing and prenatal history data available from the Pediatric Cardiac Genomics Consortium's CHD GENES study. The frequency of DNVs was compared between subgroups using t test or linear model.
    RESULTS: DNV frequencies were compared for 1812 patients with CHD and prenatal history data who were recruited to the Pediatric Cardiac Genomics Consortium's CHD GENES study. The number of DNVs per CHD patient was higher with exposure to maternal diabetes (76.5 versus 72.1, t test P=3.03×10-11), but the difference was no longer significant after including parental ages in a linear model (paternal and maternal correction P=0.42). No interaction was observed between diabetes risk and parental age (paternal and maternal interaction P=0.80 and 0.68, respectively). No difference was seen in DNV count per patient based on maternal obesity (72.0 versus 72.2 for maternal body mass index <25 versus maternal body mass index >30, t test P=0.86).
    CONCLUSIONS: After accounting for parental age, the offspring of diabetic or obese mothers have no increase in DNVs compared with other children with CHD. These results emphasize the role for other mechanisms in the cause of CHD associated with these prenatal exposures.
    REGISTRATION: URL: https://clinicaltrials.gov; NCT01196182.
    Keywords:  body mass index; genome; heart diseases; obesity; prevalence
    DOI:  https://doi.org/10.1161/CIRCGEN.121.003500
  25. Liver Int. 2022 Feb 07.
      BACKGROUND AND AIMS: With the epidemic burden of obesity and metabolic diseases, nonalcoholic fatty liver disease (NAFLD) including steatohepatitis (NASH) has become the most common chronic liver disease in the western world. NASH may progress to cirrhosis and hepatocellular carcinoma. Currently no treatment is available for NASH. Therefore, finding a therapy for NAFLD/NASH is in urgent need. Previously we have demonstrated that mice lacking CD47 or its ligand thrombospondin1 (TSP1) are protected from obesity-associated NALFD. This suggests that CD47 blockade might be a novel treatment for obesity-associated metabolic disease. Thus, in this study, the therapeutic potential of an anti-CD47 antibody in NAFLD progression was determined.METHODS: Both diet-induced NASH mouse model and human NASH organoid model were utilized in this study. NASH was induced in mice by feeding with diet enriched with fat, fructose and cholesterol (AMLN diet) for 20 weeks and then treated with anti-CD47 antibody or control IgG for 4 weeks. Body weight, body composition and liver phenotype were analyzed.
    RESULTS: We found that anti-CD47 antibody treatment did not affect mice body weight, fat mass, or liver steatosis. However, liver immune cell infiltration, inflammation and fibrosis were significantly reduced by anti-CD47 antibody treatment. In vitro data further showed that CD47 blockade prevented hepatic stellate cell activation and NASH progression in a human NASH organoid model.
    CONCLUSION: Collectively, these data suggest that anti-CD47 antibody might be a new therapeutic option for obesity-associated NASH and liver fibrosis.
    Keywords:  AMLN diet; CD47; NAFLD; NASH; obesity; organoid
    DOI:  https://doi.org/10.1111/liv.15182
  26. Front Immunol. 2021 ;12 826621
      Influenza is one of the most relevant respiratory viruses to human health causing annual epidemics, and recurrent pandemics. Influenza disease is principally associated with inappropriate activation of the immune response. Chemokine receptor 5 (CCR5) and its cognate chemokines CCL3, CCL4 and CCL5 are rapidly induced upon influenza infection, contributing to leukocyte recruitment into the airways and a consequent effective antiviral response. Here we discuss the existing evidence for CCR5 role in the host immune responses to influenza virus. Complete absence of CCR5 in mice revealed the receptor's role in coping with influenza via the recruitment of early memory CD8+ T cells, B cell activation and later recruitment of activated CD4+ T cells. Moreover, CCR5 contributes to inflammatory resolution by enhancing alveolar macrophages survival and reprogramming macrophages to pro-resolving phenotypes. In contrast, CCR5 activation is associated with excessive recruitment of neutrophils, inflammatory monocytes, and NK cells in models of severe influenza pneumonia. The available data suggests that, while CCL5 can play a protective role in influenza infection, CCL3 may contribute to an overwhelming inflammatory process that can harm the lung tissue. In humans, the gene encoding CCR5 might contain a 32-base pair deletion, resulting in a truncated protein. While discordant data in literature regarding this CCR5 mutation and influenza severity, the association of CCR5delta32 and HIV resistance fostered the development of different CCR5 inhibitors, now being tested in lung inflammation therapy. The potential use of CCR5 inhibitors to modulate the inflammatory response in severe human influenza infections is to be addressed.
    Keywords:  CCL3; CCL5; CCR5delta32; chemokine receptor 5; influenza
    DOI:  https://doi.org/10.3389/fimmu.2021.826621
  27. Mult Scler Relat Disord. 2022 Feb 03. pii: S2211-0348(22)00163-8. [Epub ahead of print]59 103648
      BACKGROUND: Growing literature supports the hypothesis that personality influences health outcomes. Few studies have examined the association between personality traits and key clinical manifestations in persons with multiple sclerosis (pwMS).OBJECTIVE: To investigate whether personality traits are associated with physical function, cognition, and depression in persons with MS.
    METHODS: In this cross-sectional study, we analyzed data from two cohorts (UPMC, n = 365 and CUIMC, n = 129). Participants completed a personality scale (assessing neuroticism, extraversion, openness, agreeableness, and conscientiousness) and validated surveys measuring physical function, cognition, and depression. Stepwise linear regressions were used to evaluate associations between personality traits and outcome measures.
    RESULTS: Consistently across cohorts, higher extraversion was associated with better physical function, whereas higher neuroticism was associated with worse depression. In the first cohort, higher extraversion was associated with better cognition, while higher neuroticism was associated with greater risk for memory impairment in the second cohort. Relationships were independent of age and disease duration.
    CONCLUSION: Findings suggest a potentially protective role of extraversion, and a harmful role of neuroticism, in MS-specific patient-reported clinical outcomes. Increased understanding of the interplay between personality and health outcomes may inform risk models for physical decline, cognitive impairment, and depression in pwMS.
    Keywords:  Cognition; Mood; Multiple sclerosis; Personality traits; Physical function
    DOI:  https://doi.org/10.1016/j.msard.2022.103648