Biochim Biophys Acta Rev Cancer. 2025 May 10. pii: S0304-419X(25)00087-3. [Epub ahead of print] 189345
Hepatocellular carcinoma (HCC) is a highly heterogeneous and complex cancer influenced by both the tumor microenvironment and multi-level regulation of the nervous system. Increasing evidence highlights critical roles of the central nervous system (CNS) and peripheral nervous system (PNS) in modulating HCC progression. Psychological stress and emotional disturbances, representing CNS dysregulation, directly accelerate tumor growth, metastasis, and impair anti-tumor immunity in HCC. PNS involvement, particularly autonomic innervation, extensively reshapes the hepatic tumor microenvironment; specifically, sympathetic activation promotes immune suppression, tumor cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stemness via β-adrenergic signaling and hypoxia-inducible factor 1-alpha (HIF-1α) stabilization, whereas parasympathetic signals generally exert anti-inflammatory and tumor-suppressive effects mediated by acetylcholine. Neurotransmitters including epinephrine, norepinephrine, dopamine, serotonin, and acetylcholine precisely regulate critical pathways such as AKT/mTOR, ERK, and NF-κB, thereby driving malignant cell behaviors, immune evasion, and chemoresistance. Neuro-targeted pharmacological interventions (e.g., SSRIs, β-blockers, dopamine antagonists) and behavioral therapies have shown efficacy in preclinical studies, underscoring their therapeutic potential. Additionally, neural-associated biomarkers like NEDD9, CNTN1, and nerve growth factor (NGF) exhibit prognostic significance, supporting their future clinical application. By systematically integrating neuroscience with oncology, this review identifies innovative neural-based therapeutic strategies, highlights key mechanistic insights, and outlines promising directions for future research and personalized clinical management of HCC.
Keywords: Hepatocellular carcinoma; Nervous system; Neurotransmitters; Therapeutic implications; Tumor microenvironment