bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2023–11–26
ten papers selected by
Marco Tigano, Thomas Jefferson University



  1. Antioxidants (Basel). 2023 Nov 16. pii: 2007. [Epub ahead of print]12(11):
      The endoplasmic reticulum is a subcellular organelle key in the control of synthesis, folding, and sorting of proteins. Under endoplasmic reticulum stress, an adaptative unfolded protein response is activated; however, if this activation is prolonged, cells can undergo cell death, in part due to oxidative stress and mitochondrial fragmentation. Here, we report that endoplasmic reticulum stress activates c-Abl tyrosine kinase, inducing its translocation to mitochondria. We found that endoplasmic reticulum stress-activated c-Abl interacts with and phosphorylates the mitochondrial fusion protein MFN2, resulting in mitochondrial fragmentation and apoptosis. Moreover, the pharmacological or genetic inhibition of c-Abl prevents MFN2 phosphorylation, mitochondrial fragmentation, and apoptosis in cells under endoplasmic reticulum stress. Finally, in the amyotrophic lateral sclerosis mouse model, where endoplasmic reticulum and oxidative stress has been linked to neuronal cell death, we demonstrated that the administration of c-Abl inhibitor neurotinib delays the onset of symptoms. Our results uncovered a function of c-Abl in the crosstalk between endoplasmic reticulum stress and mitochondrial dynamics via MFN2 phosphorylation.
    Keywords:  amyotrophic lateral sclerosis; apoptosis; c-Abl; endoplasmic reticulum stress; mitochondrial fusion; mitofusin 2
    DOI:  https://doi.org/10.3390/antiox12112007
  2. Cell Rep. 2023 Nov 23. pii: S2211-1247(23)01484-5. [Epub ahead of print]42(12): 113472
      Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.
    Keywords:  CP: Cell biology; chemical biology
    DOI:  https://doi.org/10.1016/j.celrep.2023.113472
  3. Apoptosis. 2023 Nov 24.
      Proteins from the Bcl-2 family play an essential role in the regulation of apoptosis. However, they also possess cell death-unrelated activities that are less well understood. This prompted us to study apoptosis-unrelated activities of the Bax and Bak, pro-apoptotic members of the Bcl-2 family. We prepared Bax/Bak-deficient human cancer cells of different origin and found that while respiration in the glioblastoma U87 Bax/Bak-deficient cells was greatly enhanced, respiration of Bax/Bak-deficient B lymphoma HBL-2 cells was slightly suppressed. Bax/Bak-deficient U87 cells also proliferated faster in culture, formed tumours more rapidly in mice, and showed modulation of metabolism with a considerably increased NAD+/NADH ratio. Follow-up analyses documented increased/decreased expression of mitochondria-encoded subunits of respiratory complexes and stabilization/destabilization of the mitochondrial transcription elongation factor TEFM in Bax/Bak-deficient U87 and HBL-2 cells, respectively. TEFM downregulation using shRNAs attenuated mitochondrial respiration in Bax/Bak-deficient U87 as well as in parental HBL-2 cells. We propose that (post)translational regulation of TEFM levels in Bax/Bak-deficient cells modulates levels of subunits of mitochondrial respiratory complexes that, in turn, contribute to respiration and the accompanying changes in metabolism and proliferation in these cells.
    Keywords:  Bak; Bax; Cell proliferation; Metabolism; Mitochondrial respiration; TEFM
    DOI:  https://doi.org/10.1007/s10495-023-01917-2
  4. Nat Commun. 2023 Nov 24. 14(1): 7722
      Mutations in mitochondrial DNA (mtDNA) play critical roles in many human diseases. In vivo visualization of cells bearing mtDNA mutations is important for resolving the complexity of these diseases, which remains challenging. Here we develop an integrated nano Cas12a sensor (InCasor) and show its utility for efficient imaging of mtDNA mutations in live cells and tumor-bearing mouse models. We co-deliver Cas12a/crRNA, fluorophore-quencher reporters and Mg2+ into mitochondria. This process enables the activation of Cas12a's trans-cleavage by targeting mtDNA, which efficiently cleave reporters to generate fluorescent signals for robustly sensing and reporting single-nucleotide variations (SNVs) in cells. Since engineered crRNA significantly increase Cas12a's sensitivity to mismatches in mtDNA, we can identify tumor tissue and metastases by visualizing cells with mutant mtDNAs in vivo using InCasor. This CRISPR imaging nanoprobe holds potential for applications in mtDNA mutation-related basic research, diagnostics and gene therapies.
    DOI:  https://doi.org/10.1038/s41467-023-43552-0
  5. Free Radic Biol Med. 2023 Nov 20. pii: S0891-5849(23)01115-2. [Epub ahead of print]210 75-84
      While antibiotics are designed to target bacteria specifically, most are known to affect host cell physiology. Certain classes of antibiotics have been reported to have immunosuppressive effects, but the underlying mechanisms remain elusive. Here, we show that doxycycline, a ribosomal-targeting antibiotic, effectively inhibited both mitochondrial translation and nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome-mediated caspase-1 activation and interleukin-1β (IL-1β) production in bone-marrow-derived macrophages (BMDMs). In addition, knockdown of mitochondrial methionyl-tRNA formyltransferase (Mtfmt), which is rate limiting for mitochondrial translation, also resulted in the inhibition of NLRP3 inflammasome-mediated caspase-1 activation and IL-1β secretion. Furthermore, both doxycycline treatment and Mtfmt knockdown blocked the synthesis of mitochondrial DNA (mtDNA) and the generation of oxidized mtDNA (Ox-mtDNA), which serves as a ligand for NLRP3 inflammasome activation. In addition, in vivo results indicated that doxycycline mitigated NLRP3 inflammasome-dependent inflammation, including lipopolysaccharide-induced systemic inflammation and endometritis. Taken together, the results unveil the antibiotics targeting the mitoribosome have the ability to mitigate NLRP3 inflammasome activation by inhibiting mitochondrial translation and mtDNA synthesis thus opening up new possibilities for the treatment of NLRP3-related diseases.
    Keywords:  Doxycycline; Mitochondrial translation; NLRP3 inflammasome; mtDNA
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2023.11.014
  6. Radiat Res. 2023 Nov 21.
      Heme is an essential component of the hemoproteins involved in the mitochondrial electron transport chain (ETC). Cancer cells have been reported to display high heme levels and increased activity of heme-containing proteins. Consistently, inhibition of heme biosynthesis by the ALAD inhibitor succinylacetone (SA) has been shown to reduce tumor cell survival. These observations indicate that heme biosynthesis is essential for cancer cell proliferation. X irradiation has been shown to increase mitochondrial mass, membrane potential, oxygen consumption, reactive oxygen species (ROS) production, and ATP synthesis. This finding suggests that radiation activates mitochondrial oxidative phosphorylation (OXPHOS). However, although heme is an essential component of the mitochondrial ETC, whether radiation influences heme biosynthesis remains unclear. In this study, we evaluated heme biosynthesis activity after X irradiation and examined the effects of heme biosynthesis inhibition by SA on cellular radiosensitivity and mitochondrial OXPHOS function. We demonstrated that X irradiation significantly increased ALAS1 mRNA levels and cellular heme content. Inhibition of heme biosynthesis by SA significantly decreased cellular heme content and sensitized cancer cells to radiation. We also showed that SA reduced cellular ATP levels, mitochondrial membrane potential, and mitochondrial ROS production, suggesting mitochondrial OXPHOS dysfunction. SA decreased the expression of mitochondrial heme-related proteins COX2 and cytochrome c but did not influence COX1 and VDAC expression. These results indicate that inhibition of heme biosynthesis decreased mitochondrial ETC protein expression and OXPHOS activity, which triggered cellular ATP depletion and radiosensitization after X irradiation. In summary, heme biosynthesis is upregulated by X irradiation and is essential for mitochondrial OXPHOS and cell survival.
    DOI:  https://doi.org/10.1667/RADE-23-00035.1
  7. bioRxiv. 2023 Nov 11. pii: 2023.11.07.566130. [Epub ahead of print]
      UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). In eukaryotic cells, photodamage and other bulky lesions occurring in nuclear genomes (nucDNAs) can be repaired through nucleotide excision repair (NER), where dual incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current views hold that the only way to eliminate bulky DNA damage in mtDNAs is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with anti-damage antibodies and sequenced (XR-seq) to produce high resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae , and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana ). In A. thaliana and S. cerevisiae , the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in 2-nt ( S. cerevisiae ) or 4-nt ( A. thaliana ) intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. We hypothesize that these fragments may reflect the outcome of a previously uncharacterized mechanism of NER-like repair in mitochondria or a programmed mtDNA degradation pathway.
    DOI:  https://doi.org/10.1101/2023.11.07.566130
  8. Int J Mol Sci. 2023 Nov 16. pii: 16406. [Epub ahead of print]24(22):
      Mitochondrial dysfunction is a common occurrence in the aging process and is observed in diseases such as age-related macular degeneration (AMD). Increased levels of reactive oxygen species lead to damaged mitochondrial DNA (mtDNA), resulting in dysfunctional mitochondria, and, consequently, mtDNA causes further harm in the retinal tissue. However, it is unclear whether the effects are locally restricted to the high-energy-demanding retinal pigment epithelium or are also systematically present. Therefore, we measured mtDNA copy number (mtDNA-CN) in peripheral blood using a qPCR approach with plasmid normalization in elderly participants with and without AMD from the AugUR study (n = 2262). We found significantly lower mtDNA-CN in the blood of participants with early (n = 453) and late (n = 170) AMD compared to AMD-free participants (n = 1630). In regression analyses, we found lower mtDNA-CN to be associated with late AMD when compared with AMD-free participants. Each reduction of mtDNA-CN by one standard deviation increased the risk for late AMD by 24%. This association was most pronounced in geographic atrophy (OR = 1.76, 95% CI 1.19-2.60, p = 0.004), which has limited treatment options. These findings provide new insights into the relationship between mtDNA-CN in blood and AMD, suggesting that it may serve as a more accessible biomarker than mtDNA-CN in the retina.
    Keywords:  age-related macular degeneration; aging; geographic atrophy; mitochondrial DNA copy number; mtDNA abundance
    DOI:  https://doi.org/10.3390/ijms242216406
  9. Cell Prolif. 2023 Nov 22. e13576
      Non-alcoholic fatty liver disease (NAFLD) has emerged as the primary risk factor for hepatocellular carcinoma (HCC), owing to improved vaccination rates of Hepatitis B and the increasing prevalence of metabolic syndrome related to obesity. Although the importance of innate and adaptive immune cells has been emphasized, the malignant transformation of hepatocytes and their intricate cellular network with the immune system remain unclear. The study incorporated four single-cell transcriptomic datasets of liver tissues covering healthy and NAFLD-related disease status. To identify the subsets and functions of hepatocytes and macrophages, we employed differential composition analysis, functional enrichment analysis, pseudotime analysis, and scenic analysis. Furthermore, an experimental mouse model for the transformation of nonalcoholic steatohepatitis into hepatocellular carcinoma was established for validation purposes. We defined CYP7A1+ hepatocytes enriched in precancerous lesions as 'Transitional Cells' in the progression from NAFLD to HCC. CYP7A1+ hepatocytes upregulated genes associated with stress response, inflammation and cancer-associated pathways and downregulated the normal hepatocyte signature. We observed that hypoxia activation accompanied the entire process of inflammation-cancer transformation. Hepatocyte-derived HIF1A was gradually activated during the progression of NAFLD disease to adapt to the hypoxic microenvironment and hepatocytes under hypoxic environment led to changes in the metabolism, proliferation and angiogenesis, promoting the occurrence of tumours. Meanwhile, hypoxia induced the polarization of RACK1+ macrophages that enriched in the liver tissues of NASH towards immunosuppressed TREM2+ macrophages. Moreover, immunosuppressive TREM2+ macrophages were recruited by tumour cells through the CCL15-CCR1 axis to enhance immunosuppressive microenvironment and promote NAFLD-related HCC progression. The study provides a deep understanding of the development mechanism of NAFLD-related HCC and offers theoretical support and experimental basis for biological targets, drug research, and clinical application.
    DOI:  https://doi.org/10.1111/cpr.13576
  10. Nat Commun. 2023 Nov 18. 14(1): 7527
      Mitochondria dysfunction contributes to acute liver injuries, and mitochondrial regulators, such as PGC-1α and MCJ, affect liver regeneration. Therefore, identification of mitochondrial modulators may pave the way for developing therapeutic strategies. Here, ZHX2 is identified as a mitochondrial regulator during acute liver injury. ZHX2 both transcriptionally inhibits expression of several mitochondrial electron transport chain genes and decreases PGC-1α stability, leading to reduction of mitochondrial mass and OXPHOS. Loss of Zhx2 promotes liver recovery by increasing mitochondrial OXPHOS in mice with partial hepatectomy or CCl4-induced liver injury, and inhibition of PGC-1α or electron transport chain abolishes these effects. Notably, ZHX2 expression is higher in liver tissues from patients with drug-induced liver injury and is negatively correlated with mitochondrial mass marker TOM20. Delivery of shRNA targeting Zhx2 effectively protects mice from CCl4-induced liver injury. Together, our data clarify ZHX2 as a negative regulator of mitochondrial OXPHOS and a potential target for developing strategies for improving liver recovery after acute injuries.
    DOI:  https://doi.org/10.1038/s41467-023-43439-0