bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2023–06–25
eight papers selected by
Marco Tigano, Thomas Jefferson University



  1. Cell. 2023 Jun 19. pii: S0092-8674(23)00591-3. [Epub ahead of print]
      Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling. Elevated Z-form mtDNA, ZBP1 expression, and IFN-I signaling are observed in cardiomyocytes after exposure to Doxorubicin, a first-line chemotherapeutic agent that induces frequent cardiotoxicity in cancer patients. Strikingly, mice lacking ZBP1 or IFN-I signaling are protected from Doxorubicin-induced cardiotoxicity. Our findings reveal ZBP1 as a cooperative partner for cGAS that sustains IFN-I responses to mitochondrial genome instability and highlight ZBP1 as a potential target in heart failure and other disorders where mtDNA stress contributes to interferon-related pathology.
    Keywords:  STING; Z-DNA; ZBP1; cGAS; cardiotoxicity; heart failure; mitochondrial DNA; type I interferon
    DOI:  https://doi.org/10.1016/j.cell.2023.05.039
  2. Nat Commun. 2023 Jun 22. 14(1): 3716
      Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.
    DOI:  https://doi.org/10.1038/s41467-023-39393-6
  3. Nucleic Acids Res. 2023 Jun 23. pii: gkad535. [Epub ahead of print]
      Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.
    DOI:  https://doi.org/10.1093/nar/gkad535
  4. J Vis Exp. 2023 Jun 02.
      Most physiological and disease processes, from central metabolism to immune response to neurodegeneration, involve mitochondria. The mitochondrial proteome is composed of more than 1,000 proteins, and the abundance of each can vary dynamically in response to external stimuli or during disease progression. Here, we describe a protocol for isolating high-quality mitochondria from primary cells and tissues. The two-step procedure comprises (1) mechanical homogenization and differential centrifugation to isolate crude mitochondria, and (2) tag-free immune capture of mitochondria to isolate pure organelles and eliminate contaminants. Mitochondrial proteins from each purification stage are analyzed by quantitative mass spectrometry, and enrichment yields are calculated, allowing the discovery of novel mitochondrial proteins by subtractive proteomics. Our protocol provides a sensitive and comprehensive approach to studying mitochondrial content in cell lines, primary cells, and tissues.
    DOI:  https://doi.org/10.3791/65252
  5. bioRxiv. 2023 Jun 07. pii: 2023.06.02.543466. [Epub ahead of print]
      Double-stranded RNAs (dsRNAs) are potent triggers of innate immune responses upon recognition by cytosolic dsRNA sensor proteins. Identification of endogenous dsRNAs helps to better understand the dsRNAome and its relevance to innate immunity related to human diseases. Here, we report dsRID (double-stranded RNA identifier), a machine learning-based method to predict dsRNA regions in silico , leveraging the power of long-read RNA-sequencing (RNA-seq) and molecular traits of dsRNAs. Using models trained with PacBio long-read RNA-seq data derived from Alzheimer's disease (AD) brain, we show that our approach is highly accurate in predicting dsRNA regions in multiple datasets. Applied to an AD cohort sequenced by the ENCODE consortium, we characterize the global dsRNA profile with potentially distinct expression patterns between AD and controls. Together, we show that dsRID provides an effective approach to capture global dsRNA profiles using long-read RNA-seq data.
    DOI:  https://doi.org/10.1101/2023.06.02.543466
  6. Front Immunol. 2023 ;14 1138920
       Introduction: Inhibitors of the ATR kinase act as radiosensitizers through abrogating the G2 checkpoint and reducing DNA repair. Recent studies suggest that ATR inhibitors can also increase radiation-induced antitumor immunity, but the underlying immunomodulating mechanisms remain poorly understood. Moreover, it is poorly known how such immune effects relate to different death pathways such as caspase-dependent apoptosis. Here we address whether ATR inhibition in combination with irradiation may increase the presentation of hallmark factors of immunogenic cell death (ICD), and to what extent caspase activation regulates this response.
    Methods: Human lung cancer and osteosarcoma cell lines (SW900, H1975, H460, U2OS) were treated with X-rays and ATR inhibitors (VE822; AZD6738) in the absence and presence of a pan-caspase inhibitor. The ICD hallmarks HMGB1 release, ATP secretion and calreticulin surface-presentation were assessed by immunoblotting of growth medium, the CellTiter-Glo assay and an optimized live-cell flow cytometry assay, respectively. To obtain accurate measurement of small differences in the calreticulin signal by flow cytometry, we included normalization to a barcoded control sample.
    Results: Extracellular release of HMGB1 was increased in all the cell lines at 72 hours after the combined treatment with radiation and ATR inhibitors, relative to mock treatment or cells treated with radiation alone. The HMGB1 release correlated largely - but not strictly - with loss of plasma membrane integrity, and was suppressed by addition of the caspase inhibitor. However, one cell line showed HMGB1 release despite caspase inhibition, and in this cell line caspase inhibition induced pMLKL, a marker for necroptosis. ATP secretion occurred already at 48 hours after the co-treatment and did clearly not correlate with loss of plasma membrane integrity. Addition of pan-caspase inhibition further increased the ATP secretion. Surface-presentation of calreticulin was increased at 24-72 hours after irradiation, but not further increased by either ATR or caspase inhibition.
    Conclusion: These results show that ATR inhibition can increase the presentation of two out of three ICD hallmark factors from irradiated human cancer cells. Moreover, caspase activation distinctly affects each of the hallmark factors, and therefore likely plays a dual role in tumor immunogenicity by promoting both immunostimulatory and -suppressive effects.
    Keywords:  ATP - adenosine triphosphate; ATR; CALR (calreticulin); HMGB1 (high mobility group box 1); caspase; immunogenic cell death (ICD); radiation therapy (radiotherapy)
    DOI:  https://doi.org/10.3389/fimmu.2023.1138920
  7. Front Immunol. 2023 ;14 1198716
      Reactive oxygen species (ROS) is essential for neutrophil extracellular trap formation (NETosis), and generated either by NADPH oxidases (e.g., during infections) or mitochondria (e.g., sterile injury) in neutrophils. We recently showed that ultraviolet (UV) radiation, a sterile injury-inducing agent, dose-dependently induced mitochondrial ROS generation, and increasing levels of ROS shifted the neutrophil death from apoptosis to NETosis. Nevertheless, how ROS executes UV-induced NETosis is unknown. In this study, we first confirmed that UV doses used in our experiments generated mitochondrial ROS, and the inhibition of mitochondrial ROS suppressed NETosis (Mitosox, SYTOX, immunocytochemistry, imaging). Next, we showed that UV irradiation extensively oxidized DNA, by confocal imaging of 8-oxyguanine (8-oxoG) in NETs. Immunofluorescence microscopy further showed that a DNA repair protein, proliferating cell nuclear antigen, was widely distributed throughout the DNA, indicating that the DNA repair machinery was active throughout the genome during UV-induced NETosis. Inhibition of specific steps of base excision repair (BER) pathway showed that steps leading up to DNA nick formation, but not the later steps, suppressed UV-induced NETosis. In summary, this study shows that (i) high levels of mitochondrial ROS produced following UV irradiation induces extensive oxidative DNA damage, and (ii) early steps of the BER pathway leading to DNA nicking results in chromatin decondensation and NETosis. Collectively, these findings reveal how ROS induces NOX-independent NETosis, and also a novel biological mechanism for UV irradiation- and -mitochondrial ROS-mediated NETosis.
    Keywords:  DNA nick formation; UV-iradiation; base excision repair (BER); chromatin decondensation; mitochondrial ROS (mitoROS); neutrophil extracellular trap formation; oxidation of DNA
    DOI:  https://doi.org/10.3389/fimmu.2023.1198716