bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2023–01–29
ten papers selected by
Marco Tigano, Thomas Jefferson University



  1. Nature. 2023 Jan 25.
      Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.
    DOI:  https://doi.org/10.1038/s41586-022-05641-w
  2. Autophagy. 2023 Jan 24.
      Mitophagy and its variants are considered important salvage pathways to remove dysfunctional mitochondria. Non-canonical mitophagy, independent of autophagosome formation and including endosomal-dependent mitophagy, operate upon specific injury. In a recent paper, we describe a new mechanism where, upon mtDNA damage, mitochondrial nucleoids are eliminated via an endosomal-mitophagy pathway. Using proximity proteomics, we identified the proteins required for elimination of mutated mitochondrial nucleoids from the mitochondrial matrix. Among them, ATAD3 and SAMM50 control cristae architecture and nucleoid interaction, necessary for mtDNA extraction. In the mitochondrial outer membrane, SAMM50 coordinates with the retromer protein VPS35 to sequester mtDNA in endosomes and guide them towards elimination, thus avoiding the activation of an exacerbated immune response. Here, we summarize our findings and examine how this newly described pathway contributes to our understanding of mtDNA quality control.
    Keywords:  - mitophagy; endosomes; mtDNA
    DOI:  https://doi.org/10.1080/15548627.2023.2170959
  3. PLoS Genet. 2023 Jan 25. 19(1): e1010610
      Stem cells often possess immature mitochondria with few inner membrane invaginations, which increase as stem cells differentiate. Despite this being a conserved feature across many stem cell types in numerous organisms, how and why mitochondria undergo such remodelling during stem cell differentiation has remained unclear. Here, using Drosophila germline stem cells (GSCs), we show that Complex V drives mitochondrial remodelling during the early stages of GSC differentiation, prior to terminal differentiation. This endows germline mitochondria with the capacity to generate large amounts of ATP required for later egg growth and development. Interestingly, impairing mitochondrial remodelling prior to terminal differentiation results in endoplasmic reticulum (ER) lipid bilayer stress, Protein kinase R-like ER kinase (PERK)-mediated activation of the Integrated Stress Response (ISR) and germ cell death. Taken together, our data suggest that mitochondrial remodelling is an essential and tightly integrated aspect of stem cell differentiation. This work sheds light on the potential impact of mitochondrial dysfunction on stem and germ cell function, highlighting ER lipid bilayer stress as a potential major driver of phenotypes caused by mitochondrial dysfunction.
    DOI:  https://doi.org/10.1371/journal.pgen.1010610
  4. Nano Lett. 2023 Jan 23.
      The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (MitoScript). MitoScript provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, MitoScript controlled mtDNA transcription in a human cell line in an effective and selective manner. MitoScript targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed MitoScript for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.
    Keywords:  Artificial transcription factors; Mitochondria DNA (mtDNA) manipulations; Mitochondria-targeted delivery; Nanoclusters; Nanomedicine
    DOI:  https://doi.org/10.1021/acs.nanolett.2c03958
  5. Nat Cell Biol. 2023 Jan 23.
      Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.
    DOI:  https://doi.org/10.1038/s41556-022-01074-9
  6. EMBO J. 2023 Jan 27. e112309
      Hundreds of nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. However, the early processes associated with mitochondrial protein targeting remain poorly understood. Here, we show that in Saccharomyces cerevisiae, the cytosol has the capacity to transiently store mitochondrial matrix-destined precursors in dedicated deposits that we termed MitoStores. Competitive inhibition of mitochondrial protein import via clogging of import sites greatly enhances the formation of MitoStores, but they also form during physiological cell growth on nonfermentable carbon sources. MitoStores are enriched for a specific subset of nucleus-encoded mitochondrial proteins, in particular those containing N-terminal mitochondrial targeting sequences. Our results suggest that MitoStore formation suppresses the toxic potential of aberrantly accumulating mitochondrial precursor proteins and is controlled by the heat shock proteins Hsp42 and Hsp104. Thus, the cytosolic protein quality control system plays an active role during the early stages of mitochondrial protein targeting through the coordinated and localized sequestration of mitochondrial precursor proteins.
    Keywords:  chaperones; mitochondria; proteasome; protein aggregates; protein translocation
    DOI:  https://doi.org/10.15252/embj.2022112309
  7. Neurobiol Dis. 2023 Jan 23. pii: S0969-9961(23)00029-3. [Epub ahead of print]178 106015
       INTRODUCTION: Derangement of axonal mitochondrial bioenergetics occurs during progressive multiple sclerosis (PMS). However, whether this is a delayed epiphenomenon or an early causative event of disease progression waits to be understood. Answering this question might further our knowledge of mechanisms underlying neurobiology of PMS and related therapy.
    METHODS: MOG35-55-immunized NOD and PLP139-151-immunized SJL female mice were adopted as models of progressive or relapsing-remitting experimental autoimmune encephalomyelitis (EAE), respectively. Multiple parameters of mitochondrial homeostasis were analyzed in the mouse spinal cord during the early asymptomatic stage, also evaluating the effects of scavenging mitochondrial reactive oxygen species with Mito-TEMPO.
    RESULTS: Almost identical lumbar spinal cord immune infiltrates consisting of Th1 cells and neutrophils without B and Th17 lymphocytes occurred early upon immunization in both mouse strains. Still, only NOD mice showed axon-restricted dysregulation of mitochondrial homeostasis, with reduced mtDNA contents and increased cristae area. Increased expression of mitochondrial respiratory complex subunits Nd2, Cox1, Atp5d, Sdha also exclusively occurred in lumbar spinal cord of NOD and not SJL mice. Accordingly, in this region genes regulating mitochondrial morphology (Opa1, Mfn1, Mfn2 and Atp5j2) and mitochondriogenesis (Pgc1α, Foxo, Hif-1α and Nrf2) were induced early upon immunization. A reduced extent of mitochondrial derangement occurred in the thoracic spinal cord. Notably, the mitochondrial radical scavenger Mito-TEMPO reduced H2O2 content and prevented both mtDNA depletion and cristae remodeling, having no effects on dysregulation of mitochondrial transcriptome.
    DISCUSSION: We provide here the first evidence that axonal-restricted derangement of mitochondrial homeostasis already occurs during the asymptomatic state exclusively in a mouse model of PMS. Data further our understanding of mechanisms related to EAE progression, and point to very early axonal mitochondrial dysfunction as central to the neuropathogenesis of MS evolution.
    Keywords:  Bioenergetics; Mitochondria; Progressive EAE; Relapsing-remitting EAE
    DOI:  https://doi.org/10.1016/j.nbd.2023.106015
  8. Cell Death Dis. 2023 Jan 23. 14(1): 54
      The mitochondrial protein IF1 binds to the catalytic domain of the ATP synthase and inhibits ATP hydrolysis in ischemic tissues. Moreover, IF1 is overexpressed in many tumors and has been shown to act as a pro-oncogenic protein, although its mechanism of action is still debated. Here, we show that ATP5IF1 gene disruption in HeLa cells decreases colony formation in soft agar and tumor mass development in xenografts, underlining the role of IF1 in cancer. Notably, the lack of IF1 does not affect proliferation or oligomycin-sensitive mitochondrial respiration, but it sensitizes the cells to the opening of the permeability transition pore (PTP). Immunoprecipitation and proximity ligation analysis show that IF1 binds to the ATP synthase OSCP subunit in HeLa cells under oxidative phosphorylation conditions. The IF1-OSCP interaction is confirmed by NMR spectroscopy analysis of the recombinant soluble proteins. Overall, our results suggest that the IF1-OSCP interaction protects cancer cells from PTP-dependent apoptosis under normoxic conditions.
    DOI:  https://doi.org/10.1038/s41419-023-05572-y
  9. Cancer Res. 2023 Jan 25. pii: CAN-22-3083. [Epub ahead of print]
      Radiotherapy is a major component of standard-of-care treatment for gliomas, the most prevalent type of brain tumor. However, resistance to radiotherapy remains a major concern. Identification of mechanisms governing radioresistance in gliomas could reveal improved therapeutic strategies for treating patients. Here, we report that mitochondrial metabolic pathways are suppressed in radioresistant gliomas through integrated analyses of transcriptomic data from glioma specimens and cell lines. Decreased expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α), the key regulator of mitochondrial biogenesis and metabolism, correlated with glioma recurrence and predicted poor prognosis and response to radiation therapy of glioma patients. The subpopulation of glioma cells with low-mitochondrial-mass exhibited reduced expression of PGC-1α and enhanced resistance to radiation treatment. Mechanistically, PGC-1α was phosphorylated at serine (S) 636 by DNA-dependent protein kinase (DNA-PK) in response to irradiation. Phosphorylation at S636 promoted the degradation of PGC-1α by facilitating its binding to the E3 ligase RNF34. Restoring PGC-1α activity with expression of PGC-1α S636A, a phosphorylation-resistant mutant, or a small molecule PGC-1α activator ZLN005 increased radiosensitivity of resistant glioma cells by reactivating mitochondria-related ROS production and inducing apoptotic effects both in vitro and in vivo. In summary, this study identified a self-protective mechanism in glioma cells in which radiation-induced degradation of PGC-1α and suppression of mitochondrial biogenesis play a central role. Targeted activation of PGC-1α could help improve response to radiation therapy in glioma patients.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-3083
  10. Mol Cell. 2023 Jan 14. pii: S1097-2765(22)01217-5. [Epub ahead of print]
      The protection of DNA replication forks under stress is essential for genome maintenance and cancer suppression. One mechanism of fork protection involves an elevation in intracellular Ca2+ ([Ca2+]i), which in turn activates CaMKK2 and AMPK to prevent uncontrolled fork processing by Exo1. How replication stress triggers [Ca2+]i elevation is unclear. Here, we report a role of cytosolic self-DNA (cytosDNA) and the ion channel TRPV2 in [Ca2+]i induction and fork protection. Replication stress leads to the generation of ssDNA and dsDNA species that, upon translocation into cytoplasm, trigger the activation of the sensor protein cGAS and the production of cGAMP. The subsequent binding of cGAMP to STING causes its dissociation from TRPV2, leading to TRPV2 derepression and Ca2+ release from the ER, which in turn activates the downstream signaling cascade to prevent fork degradation. This Ca2+-dependent genome protection pathway is also activated in response to replication stress caused by oncogene activation.
    Keywords:  AMPK; CaMKK2; STING; TREX1; TRPV2; cGAS; cytosolic DNA; fork resection; intracellular Ca(2+); replication stress
    DOI:  https://doi.org/10.1016/j.molcel.2022.12.034