bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2022–03–06
29 papers selected by
Marco Tigano, Thomas Jefferson University



  1. Brain. 2022 Mar 04. pii: awab303. [Epub ahead of print]
      Mitochondria are essential organelles found in every eukaryotic cell, required to convert food into usable energy. Therefore, it is not surprising that mutations in either mtDNA or nuclear DNA-encoded genes of mitochondrial proteins cause diseases affecting the oxidative phosphorylation system, which are heterogeneous from a clinical, genetic, biochemical and molecular perspective and can affect patients at any age. Despite all this, it is surprising that our understanding of the mechanisms governing mitochondrial gene expression and its associated pathologies remain superficial and therapeutic interventions largely unexplored. We recently showed that loss of the mitochondrial matrix protease caseinolytic protease proteolytic subunit (CLPP) ameliorates phenotypes in cells characterized by defects in oxidative phosphorylation maintenance. Here, we build upon this finding by showing that CLPP depletion is indeed beneficial in vivo for various types of neuronal populations, including Purkinje cells in the cerebellum and cortical and hippocampal neurons in the forebrain, as it strongly improves distinct phenotypes of mitochondria encephalopathy, driven by the deficiency of the mitochondrial aspartyl tRNA synthase DARS2. In the absence of CLPP, neurodegeneration of DARS2-deficient neurons is delayed as they present milder oxidative phosphorylation dysfunction. This in turn leads to a decreased neuroinflammatory response and significantly improved motor functions in both double-deficient models (Purkinje cell-specific or forebrain neuron-specific Dars2/Clpp double knockout mice). We propose that diminished turnover of respiratory complex I caused by the loss of CLPP is behind the improved phenotype in Dars2/Clpp double knockout animals, even though this intervention might not restore respiratory complex I activity but rather improve mitochondrial cristae morphology or help maintain the NAD+/NADH ratio inside mitochondria. These results also open the possibility of targeting CLPP activity in many other mitochondrial encephalopathies characterized by respiratory complex I instability.
    Keywords:  CLPP protease; DARS2 deficiency; LBSL; mitochondrial diseases
    DOI:  https://doi.org/10.1093/brain/awab303
  2. Front Microbiol. 2021 ;12 814635
      The integrated stress response (ISR) is an adaptational signaling pathway induced in response to different stimuli, such as accumulation of unfolded and misfolded proteins, hypoxia, amino acid deprivation, viral infection, and ultraviolet light. It has been known that viral infection can activate the ISR, but the role of the ISR during viral infection is still unclear. In some cases, the ISR is a protective mechanism of host cells against viral infection, while viruses may hijack the ISR for facilitating their replication. This review highlighted recent advances on the induction of the ISR upon viral infection and the downstream responses, such as autophagy, apoptosis, formation of stress granules, and innate immunity response. We then discussed the molecular mechanism of the ISR regulating viral replication and how viruses antagonize this cellular stress response resulting from the ISR.
    Keywords:  eIF2α phosphorylation; host; integrated stress response; unfolded protein response; viral replication
    DOI:  https://doi.org/10.3389/fmicb.2021.814635
  3. Autophagy. 2022 Feb 27. 1-12
      Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.
    Keywords:  Atg7; NZB; heteroplasmy; mitochondria; mitophagy; parkin
    DOI:  https://doi.org/10.1080/15548627.2022.2038501
  4. Acta Pharmacol Sin. 2022 Mar 01.
      Both mitochondrial dysfunction and neuroinflammation are implicated in neurodegeneration and neurodegenerative diseases. Accumulating evidence shows multiple links between mitochondrial dysfunction and neuroinflammation. Mitochondrial-derived damage-associated molecular patterns (DAMPs) are recognized by immune receptors of microglia and aggravate neuroinflammation. On the other hand, inflammatory factors released by activated glial cells trigger an intracellular cascade, which regulates mitochondrial metabolism and function. The crosstalk between mitochondrial dysfunction and neuroinflammatory activation is a complex and dynamic process. There is strong evidence that mitochondrial dysfunction precedes neuroinflammation during the progression of diseases. Thus, an in-depth understanding of the specific molecular mechanisms associated with mitochondrial dysfunction and the progression of neuroinflammation in neurodegenerative diseases may contribute to the identification of new targets for the treatment of diseases. In this review, we describe in detail the DAMPs that induce or aggravate neuroinflammation in neurodegenerative diseases including mtDNA, mitochondrial unfolded protein response (mtUPR), mitochondrial reactive oxygen species (mtROS), adenosine triphosphate (ATP), transcription factor A mitochondria (TFAM), cardiolipin, cytochrome c, mitochondrial Ca2+ and iron.
    Keywords:  microglia; mitochondrial dysfunction; mitochondrial-derived damage-associated molecular pattern; neurodegenerative diseases; neuroinflammation
    DOI:  https://doi.org/10.1038/s41401-022-00879-6
  5. Mol Med Rep. 2022 Apr;pii: 147. [Epub ahead of print]25(4):
      Mitochondria are key organelles of cellular energy metabolism; both mitochondrial function and metabolism determine the physiological function of cells and serve an essential role in immune responses. Key damage‑associated molecular patterns (DAMPs), such as mitochondrial DNA and N‑formyl peptides, released following severe trauma‑induced mitochondrial damage may affect the respiratory chain, enhance oxidative stress and activate systemic inflammatory responses via a variety of inflammation‑associated signaling pathways. Severe trauma can lead to sepsis, multiple organ dysfunction syndrome and death. The present review aimed to summarize the pathophysiological mechanisms underlying the effects of human mitochondrial injury‑released DAMPs on triggering systemic inflammatory responses and to determine their potential future clinical applications in preventing and treating sepsis.
    Keywords:  damage‑associated molecular patterns; intestinal barrier dysfunction; mitochondrial DNA; systemic inflammatory response syndrome
    DOI:  https://doi.org/10.3892/mmr.2022.12663
  6. Elife. 2022 Mar 02. pii: e75658. [Epub ahead of print]11
      Mitochondrial biogenesis has two major steps: the transcriptional activation of nuclear genome-encoded mitochondrial proteins and the import of nascent mitochondrial proteins that are synthesized in the cytosol. These nascent mitochondrial proteins are aggregation-prone and can cause cytosolic proteostasis stress. The transcription factor-dependent transcriptional regulations and the TOM-TIM complex-dependent import of nascent mitochondrial proteins have been extensively studied. Yet, little is known regarding how these two steps of mitochondrial biogenesis coordinate with each other to avoid the cytosolic accumulation of these aggregation-prone nascent mitochondrial proteins. Here we show that in budding yeast, Tom70, a conserved receptor of the TOM complex, moonlights to regulate the transcriptional activity of mitochondrial proteins. Tom70's transcription regulatory role is conserved in Drosophila. The dual roles of Tom70 in both transcription/biogenesis and import of mitochondrial proteins allow the cells to accomplish mitochondrial biogenesis without compromising cytosolic proteostasis. The age-related reduction of Tom70, caused by reduced biogenesis and increased degradation of Tom70, is associated with the loss of mitochondrial membrane potential, mtDNA, and mitochondrial proteins. While loss of Tom70 accelerates aging and age-related mitochondrial defects, overexpressing TOM70 delays these mitochondrial dysfunctions and extends the replicative lifespan. Our results reveal unexpected roles of Tom70 in mitochondrial biogenesis and aging.
    Keywords:  S. cerevisiae; cell biology
    DOI:  https://doi.org/10.7554/eLife.75658
  7. Biomed Res Int. 2022 ;2022 7436577
      The mitochondrial unfolded protein response (UPRmt) can repair and remove misfolded or unfolded proteins in mitochondria and enhance mitochondrial protein homeostasis. Reactive oxygen species (ROS) produced by regular exercise is a crucial signal for promoting health, and skeletal muscle mitochondria are the primary source of ROS during exercise. To verify whether UPRmt is related to ROS produced by mitochondria in skeletal muscle during regular exercise, we adapted MitoTEMPO, mitochondrially targeted antioxidants, and ROS production by mitochondria. Our results showed that mitochondrial ROS is the key factor for activating UPRmt in different pathways.
    DOI:  https://doi.org/10.1155/2022/7436577
  8. Nat Commun. 2022 Mar 02. 13(1): 1121
      Predisposition to Alzheimer's disease (AD) may arise from lipid metabolism perturbation, however, the underlying mechanism remains elusive. Here, we identify ATPase family AAA-domain containing protein 3A (ATAD3A), a mitochondrial AAA-ATPase, as a molecular switch that links cholesterol metabolism impairment to AD phenotypes. In neuronal models of AD, the 5XFAD mouse model and post-mortem AD brains, ATAD3A is oligomerized and accumulated at the mitochondria-associated ER membranes (MAMs), where it induces cholesterol accumulation by inhibiting gene expression of CYP46A1, an enzyme governing brain cholesterol clearance. ATAD3A and CYP46A1 cooperate to promote APP processing and synaptic loss. Suppressing ATAD3A oligomerization by heterozygous ATAD3A knockout or pharmacological inhibition with DA1 restores neuronal CYP46A1 levels, normalizes brain cholesterol turnover and MAM integrity, suppresses APP processing and synaptic loss, and consequently reduces AD neuropathology and cognitive deficits in AD transgenic mice. These findings reveal a role for ATAD3A oligomerization in AD pathogenesis and suggest ATAD3A as a potential therapeutic target for AD.
    DOI:  https://doi.org/10.1038/s41467-022-28769-9
  9. Cell Rep. 2022 Mar 01. pii: S2211-1247(22)00171-1. [Epub ahead of print]38(9): 110444
      Accumulation of senescent cells affects organismal aging and the prevalence of age-associated disease. Emerging evidence suggests that activation of autophagy protects against age-associated diseases and promotes longevity, but the roles and regulatory mechanisms of autophagy in cellular senescence are not well understood. Here, we identify the transcription factor, MondoA, as a regulator of cellular senescence, autophagy, and mitochondrial homeostasis. MondoA protects against cellular senescence by activating autophagy partly through the suppression of an autophagy-negative regulator, Rubicon. In addition, we identify peroxiredoxin 3 (Prdx3) as another downstream regulator of MondoA essential for mitochondrial homeostasis and autophagy. Rubicon and Prdx3 work independently to regulate senescence. Furthermore, we find that MondoA knockout mice have exacerbated senescence during ischemic acute kidney injury (AKI), and a decrease of MondoA in the nucleus is correlated with human aging and ischemic AKI. Our results suggest that decline of MondoA worsens senescence and age-associated disease.
    Keywords:  C. elegans; MondoA; Rubicon; aging; autophagy; cellular senescence; kidney; mitochondrial homeostasis; mml-1; peroxiredoxin 3
    DOI:  https://doi.org/10.1016/j.celrep.2022.110444
  10. J Neurol. 2022 Mar 02.
      Mitochondrial disorders are a group of clinically and genetically heterogeneous multisystem disorders and peripheral neuropathy is frequently described in the context of mutations in mitochondrial-related nuclear genes. This study aimed to identify the causative mutations in mitochondrial-related nuclear genes in suspected hereditary peripheral neuropathy patients. We enrolled a large Japanese cohort of clinically suspected hereditary peripheral neuropathy patients who were mutation negative in the prescreening of the known Charcot-Marie-Tooth disease-causing genes. We performed whole-exome sequencing on 247 patients with autosomal recessive or sporadic inheritance for further analysis of 167 mitochondrial-related nuclear genes. We detected novel bi-allelic likely pathogenic/pathogenic variants in four patients, from four mitochondrial-related nuclear genes: pyruvate dehydrogenase beta-polypeptide (PDHB), mitochondrial poly(A) polymerase (MTPAP), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, beta subunit (HADHB), and succinate-CoA ligase ADP-forming beta subunit (SUCLA2). All these patients showed sensory and motor axonal polyneuropathy, combined with central nervous system or multisystem involvements. The pathological analysis of skeletal muscles revealed mild neurogenic changes without significant mitochondrial abnormalities. Targeted screening of mitochondria-related nuclear genes should be considered for patients with complex hereditary axonal polyneuropathy, accompanied by central nervous system dysfunctions, or with unexplainable multisystem disorders.
    Keywords:  Mitochondrial disease; Nuclear genes; Peripheral neuropathy; Whole-exome sequencing
    DOI:  https://doi.org/10.1007/s00415-022-11026-w
  11. Sci Transl Med. 2022 Mar 02. 14(634): eabl6992
      SERAC1 deficiency is associated with the mitochondrial 3-methylglutaconic aciduria with deafness, (hepatopathy), encephalopathy, and Leigh-like disease [MEGD(H)EL] syndrome, but the role of SERAC1 in mitochondrial physiology remains unknown. Here, we generated Serac1-/- mice that mimic the major diagnostic clinical and biochemical phenotypes of the MEGD(H)EL syndrome. We found that SERAC1 localizes to the outer mitochondrial membrane and is a protein component of the one-carbon cycle. By interacting with the mitochondrial serine transporter protein SFXN1, SERAC1 facilitated and was required for SFXN1-mediated serine transport from the cytosol to the mitochondria. Loss of SERAC1 impaired the one-carbon cycle and disrupted the balance of the nucleotide pool, which led to primary mitochondrial DNA (mtDNA) depletion in mice, HEK293T cells, and patient-derived immortalized lymphocyte cells due to insufficient supply of nucleotides. Moreover, both in vitro and in vivo supplementation of nucleosides/nucleotides restored mtDNA content and mitochondrial function. Collectively, our findings suggest that MEGD(H)EL syndrome shares both clinical and molecular features with the mtDNA depletion syndrome, and nucleotide supplementation may be an effective therapeutic strategy for MEGD(H)EL syndrome.
    DOI:  https://doi.org/10.1126/scitranslmed.abl6992
  12. Oncogene. 2022 Mar 02.
      Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.
    DOI:  https://doi.org/10.1038/s41388-022-02219-8
  13. Oxid Med Cell Longev. 2022 ;2022 6638244
      Mitochondrial dysfunction and necroptosis have been perceived as the primary molecular mechanisms underscoring acute lung injury. Meanwhile, nuclear receptor subfamily 4 group A member 1 (NR4A1) is considered a regulator of inflammation-related endothelial injury in lung tissue although the downstream molecular events remain elusive. In this study, we employed NR4A1-/- mice to decipher the role of NR4A1 in the onset and progression of acute lung injury with a focus on mitochondrial damage and necroptosis. Our results demonstrated that NR4A1 was significantly upregulated in lipopolysaccharide- (LPS-) treated lung tissues. Knockout of NR4A1 overtly improved lung tissue morphology, inhibited inflammation, and reduced oxidative stress in LPS-treated lung tissue. A cell signaling study suggested that NR4A1 deletion repressed levels of PGAM5 and attenuated LPS-mediated necroptosis in primary murine alveolar epithelial type II (ATII) cells, the effects of which were mitigated by PGAM5 overexpression. Moreover, LPS-mediated mitochondrial injury including mitochondrial membrane potential collapse and mitochondrial oxidative stress was drastically improved by NR4A1 deletion. Furthermore, NR4A1 deletion preserved mitochondrial homeostasis through activation of Opa1-related mitochondrial fusion. Silencing of Opa1 triggered mitochondrial dysfunction in NR4A1-deleted ATII cells. Taken together, our data identified NR4A1 as a novel regulator of LPS-related acute lung injury through regulation of mitochondrial fusion and necroptosis, indicating therapeutic promises of targeting NR4A1 in the treatment of acute lung injury in clinical practice.
    DOI:  https://doi.org/10.1155/2022/6638244
  14. Development. 2022 Mar 03. pii: dev.200458. [Epub ahead of print]
      The mitochondrial matrix AAA+ Lon protease (LONP1) degrades misfolded or unassembled proteins, which play a pivotal role in mitochondrial quality control. During heart development, a metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation takes place, and this process relies highly on functional mitochondria. However, the relationship between mitochondrial quality control machinery and metabolic shifts is elusive. Here, we interfered with mitochondrial quality control by inactivating Lonp1 in embryonic cardiac tissue and found severely impaired heart development, leading to embryonic lethality. Mitochondrial swelling, cristae loss and abnormal protein aggregates were evident in the mitochondria of Lonp1-deficient cardiomyocytes. Accordingly, the p-eIF2α-ATF4 pathway was triggered, and nuclear translocation of ATF4 was observed. We further demonstrated that ATF4 negatively regulates the expression of Tfam while promoting that of Glut1, which was responsible for the disruption of the metabolic shift to oxidative phosphorylation. Meanwhile, elevated levels of reactive oxygen species were observed in Lonp1 mutant cardiomyocytes. This study revealed that LONP1 safeguards metabolic shifts in the developing heart by controlling mitochondrial protein quality and implies that disrupted mitochondrial quality control may cause prenatal cardiomyopathy.
    Keywords:  ATF4; Glycolysis; Heart development; LONP1; Metabolic shift; Mitochondrial quality control; Oxidative phosphorylation
    DOI:  https://doi.org/10.1242/dev.200458
  15. Mitochondrion. 2022 Feb 24. pii: S1567-7249(22)00019-8. [Epub ahead of print]64 45-58
      Mitochondrial diseases are a group of genetic disorders characterized by dysfunctional mitochondria. Within eukaryotic cells, mitochondria contain their own ribosomes, which synthesize small amounts of proteins, all of which are essential for the biogenesis of the oxidative phosphorylation system. The ribosome is an evolutionarily conserved macromolecular machine in nature both from a structural and functional point of view, universally responsible for the synthesis of proteins. Among the diseases afflicting humans, those of ribosomal origin - either cytoplasmic ribosomes (80S) or mitochondrial ribosomes (70S) - are relevant. These are inherited or acquired diseases most commonly caused by either ribosomal protein haploinsufficiency or defects in ribosome biogenesis. Here we review the scientific literature about the recent advances on changes in mitochondrial ribosomal structural and assembly proteins that are implicated in primary mitochondrial diseases and neurodegenerative disorders, and their possible connection with metalloid pollution and toxicity, with a focus on MRPL44, NAM9 (MNA6) and GEP3 (MTG3), whose lack or defect was associated with resistance to tellurite. Finally, we illustrate the suitability of yeast Saccharomyces cerevisiae (S. cerevisiae) and the nematode Caenorhabditis elegans (C. elegans) as model organisms for studying mitochondrial ribosome dysfunctions including those involved in human diseases.
    Keywords:  Alzheimer’s disease; Mitochondrial diseases; Mitochondrial ribosomal protein genes; Mitochondrial ribosome; Yeast and C. elegans model organisms
    DOI:  https://doi.org/10.1016/j.mito.2022.02.006
  16. Nat Neurosci. 2022 Mar 03.
      Microglial function declines during aging. The interaction of microglia with the gut microbiota has been well characterized during development and adulthood but not in aging. Here, we compared microglial transcriptomes from young-adult and aged mice housed under germ-free and specific pathogen-free conditions and found that the microbiota influenced aging associated-changes in microglial gene expression. The absence of gut microbiota diminished oxidative stress and ameliorated mitochondrial dysfunction in microglia from the brains of aged mice. Unbiased metabolomic analyses of serum and brain tissue revealed the accumulation of N6-carboxymethyllysine (CML) in the microglia of the aging brain. CML mediated a burst of reactive oxygen species and impeded mitochondrial activity and ATP reservoirs in microglia. We validated the age-dependent rise in CML levels in the sera and brains of humans. Finally, a microbiota-dependent increase in intestinal permeability in aged mice mediated the elevated levels of CML. This study adds insight into how specific features of microglia from aged mice are regulated by the gut microbiota.
    DOI:  https://doi.org/10.1038/s41593-022-01027-3
  17. Cell Biol Toxicol. 2022 Mar 02.
      Diabetic cardiomyopathy (DCM) is characterized by lipid accumulation, mitochondrial dysfunction, and aseptic inflammatory activation. Mitochondria-derived cytosolic DNA has been reported to induce inflammation by activating cyclic GMP-AMP synthase (cGAS)/the stimulator of interferon genes (STING) pathway in the adipose, liver, and kidney tissues. However, the role of cytosolic mtDNA in the progression of DCM is unclear. In this study, with an obesity-related DCM mouse model established by feeding db/db mice with a high-fat diet (HFD), we observed increased mtDNA in the cytosol and activated cGAS-STING signaling pathway during DCM, as well as the downstream targets, IRF3, NF-κB, IL-18, and IL-1β. In a further study with a palmitic acid (PA)-induced lipotoxic cell model established in H9C2 cells, we revealed that the cytosolic mtDNA was the result of PA-induced overproduction of mitochondrial ROS, which also led to the activation of the cGAS/STING system and its downstream targets. Notably, treatment of extracted mtDNA alone was sufficient to activate the cGAS-STING signaling pathway in cultured H9C2 cells. Besides, both knockdown of STING in PA-induced H9C2 cells and inhibition of STING by C-176 injection in the DCM mouse model could remarkably block the inflammation and apoptosis of cardiomyocytes. In conclusion, our study elucidated the critical role of cytosolic mtDNA-induced cGAS-STING activation in the pathogenesis of obesity-related DCM and provided preclinical validation for using a STING inhibitor as a new potential therapeutic strategy for the treatment of DCM.
    Keywords:  Diabetic cardiomyopathy; Lipotoxicity; cGAS-STING; mtDNA release
    DOI:  https://doi.org/10.1007/s10565-021-09692-z
  18. BMC Immunol. 2022 Mar 04. 23(1): 9
       BACKGROUND: In addition to its role in antigen presentation, recent reports establish a new role for endoplasmic reticulum aminopeptidase 1 (ERAP1) in innate immunity; however, the mechanisms underlying these functions are not fully defined. We previously confirmed that loss of ERAP1 functions resulted in exaggerated innate immune responses in a murine in vivo model. Here, we investigated the role of ERAP1 in suppressing inflammasome pathways and their dependence on ER stress responses.
    RESULTS: Using bone marrow-derived macrophages (BMDMs), we found that loss of ERAP1 in macrophages resulted in exaggerated production of IL-1β and IL-18 and augmented caspase-1 activity, relative to wild type macrophages. Moreover, an in vivo colitis model utilizing dextran sodium sulfate (DSS) confirmed increased levels of proinflammatory cytokines and chemokines in the colon of DSS treated ERAP1-/- mice as compared to identically stimulated WT mice. Interestingly, stimulated ERAP1-/- BMDMs and CD4+ T cells simultaneously demonstrated exaggerated ER stress, assessed by increased expression of ER stress-associated genes, a state that could be reverted to WT levels with use of the ER stress inhibitor Tauroursodeoxycholic acid (TUDCA).
    CONCLUSIONS: Together, these results not only suggest that ERAP1 is important for regulating inflammasome dependent innate immune response pathways in vivo, but also propose a mechanism that underlies these changes, that may be associated with increased ER stress due to lack of normal ERAP1 functions.
    Keywords:  Ankylosing spondylitis; ER stress; Inflammasome; Innate immunity
    DOI:  https://doi.org/10.1186/s12865-022-00481-9
  19. Proc Natl Acad Sci U S A. 2022 Mar 08. 119(10): e2119529119
      SignificanceUnderstanding and treating neurological disorders are global priorities. Some of these diseases are engendered by mutations that cause defects in the cellular synthesis of transfer RNAs (tRNAs), which function as adapter molecules that translate messenger RNAs into proteins. During tRNA biogenesis, ribonuclease P catalyzes removal of the transcribed sequence upstream of the mature tRNA. Here, we focus on a cytoplasmic tRNAArgUCU that is expressed specifically in neurons and, when harboring a particular point mutation, contributes to neurodegeneration in mice. Our results suggest that this mutation favors stable alternative structures that are not cleaved by mouse ribonuclease P and motivate a paradigm that may help to understand the molecular basis for disease-associated mutations in other tRNAs.
    Keywords:  conformational toggling; neurodegeneration; tRNA processing; tRNA-Arg-TCT-4-1
    DOI:  https://doi.org/10.1073/pnas.2119529119
  20. Front Behav Neurosci. 2021 ;15 778456
      Mitochondria are essential organelles central to various cellular functions such as energy production, metabolic pathways, signaling transduction, lipid biogenesis, and apoptosis. In the central nervous system, neurons depend on mitochondria for energy homeostasis to maintain optimal synaptic transmission and integrity. Deficiencies in mitochondrial function, including perturbations in energy homeostasis and mitochondrial dynamics, contribute to aging, and Alzheimer's disease. Chronic and heavy alcohol use is associated with accelerated brain aging, and increased risk for dementia, especially Alzheimer's disease. Furthermore, through neuroimmune responses, including pro-inflammatory cytokines, excessive alcohol use induces mitochondrial dysfunction. The direct and indirect alcohol-induced neuroimmune responses, including pro-inflammatory cytokines, are critical for the relationship between alcohol-induced mitochondrial dysfunction. In the brain, alcohol activates microglia and increases inflammatory mediators that can impair mitochondrial energy production, dynamics, and initiate cell death pathways. Also, alcohol-induced cytokines in the peripheral organs indirectly, but synergistically exacerbate alcohol's effects on brain function. This review will provide recent and advanced findings focusing on how alcohol alters the aging process and aggravates Alzheimer's disease with a focus on mitochondrial function. Finally, we will contextualize these findings to inform clinical and therapeutic approaches towards Alzheimer's disease.
    Keywords:  Alzheimer’s disease; aging; alcohol use disorder; dementia; mitochondria; morphology
    DOI:  https://doi.org/10.3389/fnbeh.2021.778456
  21. Front Mol Biosci. 2022 ;9 837610
      Enhancing the immune microenvironment in cancer by targeting the nucleic acid sensors is becoming a potent therapeutic strategy. Among the nucleic acid sensors, activation of the RNA sensor Retinoic Acid-inducible Gene (RIG-I) using small hairpin RNAs has been shown to elicit powerful innate and adaptive immune responses. Given the challenges inherent in pharmacokinetics and delivery of RNA based agonists, we set out to discover small molecule agonists of RIG-I using a cell-based assay. To this end, we established and validated a robust high throughput screening assay based on a commercially available HEK293 reporter cell line with a luciferase reporter downstream of tandem interferon stimulated gene 54 (ISG54) promoter elements. We first confirmed that the luminescence in this cell line is dependent on RIG-I and the interferon receptor using a hairpin RNA RIG-I agonist. We established a 96-well and a 384-well format HTS based on this cell line and performed a proof-of-concept screen using an FDA approved drug library of 1,200 compounds. Surprisingly, we found two HDAC inhibitors Entinostat, Mocetinostat and the PLK1 inhibitor Volasertib significantly enhanced ISG-luciferase activity. This luminescence was substantially diminished in the null reporter cell line indicating the increase in signaling was dependent on RIG-I expression. Combination treatment of tumor cell lines with Entinostat increased RIG-I induced cell death in a mammary carcinoma cell line that is resistant to either Entinostat or RIG-I agonist alone. Taken together, our data indicates an unexpected role for HDAC1,-3 inhibitors in enhancing RIG-I signaling and highlight potential opportunities for therapeutic combinations.
    Keywords:  HDAC; RIG-1; cancer biology; cell-based screening assay; high throughput screen
    DOI:  https://doi.org/10.3389/fmolb.2022.837610
  22. Nat Commun. 2022 Mar 04. 13(1): 1172
      Hypoxia is a physiological stress that frequently occurs in solid tissues. Autophagy, a ubiquitous degradation/recycling system in eukaryotic cells, renders cells tolerant to multiple stressors. However, the mechanisms underlying autophagy initiation upon hypoxia remains unclear. Here we show that protein arginine methyltransferase 5 (PRMT5) catalyzes symmetrical dimethylation of the autophagy initiation protein ULK1 at arginine 170 (R170me2s), a modification removed by lysine demethylase 5C (KDM5C). Despite unchanged PRMT5-mediated methylation, low oxygen levels decrease KDM5C activity and cause accumulation of ULK1 R170me2s. Dimethylation of ULK1 promotes autophosphorylation at T180, a prerequisite for ULK1 activation, subsequently causing phosphorylation of Atg13 and Beclin 1, autophagosome formation, mitochondrial clearance and reduced oxygen consumption. Further, expression of a ULK1 R170K mutant impaired cell proliferation under hypoxia. This study identifies an oxygen-sensitive methylation of ULK1 with an important role in hypoxic stress adaptation by promoting autophagy induction.
    DOI:  https://doi.org/10.1038/s41467-022-28831-6
  23. Mol Cell. 2022 Mar 03. pii: S1097-2765(22)00108-3. [Epub ahead of print]82(5): 1066-1077.e7
      The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.
    Keywords:  acetylation; cell cycle; lamin; metabolism; mitochondria; mitofusin; nucleus; protein trafficking; pyruvate dehydrogenase complex; tethering
    DOI:  https://doi.org/10.1016/j.molcel.2022.02.003
  24. Cell Chem Biol. 2022 Feb 28. pii: S2451-9456(22)00086-1. [Epub ahead of print]
      The spatial arrangement of newly synthesized transcriptome in eukaryotic cells underlies various biological processes including cell proliferation and differentiation. In this study, we combine metabolic incorporation of electron-rich ribonucleosides (e.g., 6-thioguanosine and 4-thiouridine) with a peroxidase-mediated proximity-dependent RNA labeling technique (APEX-seq) to develop a sensitive method, termed MERR APEX-seq, for selectively profiling newly transcribed RNAs at specific subcellular locations in live cells. We demonstrate that MERR APEX-seq is 20-fold more efficient than APEX-seq and offers both high spatial specificity and high coverage in mitochondrial matrix. At the ER membrane, 91% of the transcripts captured by MERR APEX-seq encode for secretory pathway proteins, thus demonstrating the high spatial specificity of MERR APEX-seq in open subcellular compartments. Application of MERR APEX-seq to the nuclear lamina of human cells reveals a local transcriptome of 1,012 RNAs, many of which encode for nuclear proteins involved in histone modification, chromosomal structure maintenance, and RNA processing.
    Keywords:  APEX-seq; RNA labeling; nascent transcriptome; nuclear lamina
    DOI:  https://doi.org/10.1016/j.chembiol.2022.02.005
  25. Nat Commun. 2022 Feb 28. 13(1): 1071
      Although several long noncoding RNAs (lncRNAs) have recently been shown to encode small polypeptides, those in testis remain largely uncharacterized. Here we identify two sperm-specific polypeptides, Kastor and Polluks, encoded by a single mouse locus (Gm9999) previously annotated as encoding a lncRNA. Both Kastor and Polluks are inserted in the outer mitochondrial membrane and directly interact with voltage-dependent anion channel (VDAC), despite their different amino acid sequences. Male VDAC3-deficient mice are infertile as a result of reduced sperm motility due to an abnormal mitochondrial sheath in spermatozoa, and deficiency of both Kastor and Polluks also severely impaired male fertility in association with formation of a similarly abnormal mitochondrial sheath. Spermatozoa lacking either Kastor or Polluks partially recapitulate the phenotype of those lacking both. Cooperative function of Kastor and Polluks in regulation of VDAC3 may thus be essential for mitochondrial sheath formation in spermatozoa and for male fertility.
    DOI:  https://doi.org/10.1038/s41467-022-28677-y
  26. Cell Death Dis. 2022 Mar 02. 13(3): 199
      We have previously demonstrated that extracellular adenosine 5'-triphosphate (ATP) promotes breast cancer cell chemoresistance. However, the underlying mechanism remains unclear. Using a cDNA microarray, we demonstrated that extracellular ATP can stimulate hypoxia-inducible factor (HIF) signaling. In this study, we report that hypoxia-inducible factor 1α (HIF-1α) was upregulated after ATP treatment and mediated the ATP-driven chemoresistance process. We aimed to investigate the mechanisms and identify potential clinically relevant targets that are involved. Using mass spectrometry, we found that aldolase A (ALDOA) interacts with HIF-1α and increases HIF-1α expression. We then demonstrated that STAT3-ALDOA mediates ATP-HIF-1α signaling and upregulates the HIF-1 target genes adrenomedullin (ADM) and phosphoinositide-dependent kinase-1 (PDK1). Moreover, we show that PI3K/AKT acts upstream of HIF-1α in ATP signaling and contributes to chemoresistance in breast cancer cells. In addition, HIF-1α-knockdown or treatment with direct HIF inhibitors combined with the ATP hydrolase apyrase in MDA-MB-231 cells induced enhanced drug sensitivity in nude BALB/c mice. We then used in vitro spheroid formation assays to demonstrate the significance of ATP-HIF-1α in mediating chemoresistance. Furthermore, considering that indirect HIF inhibitors are effective in clinical cancer therapy, we treated tumor-bearing BALB/c mice with STAT3 and PI3K/AKT inhibitors and found that the dual-targeting strategy sensitized breast cancer to cisplatin. Finally, using breast cancer tissue microarrays, we found that ATP-HIF-1α signaling is associated with cancer progression, poor prognosis, and resistance to chemotherapy. Taken together, we suggest that HIF-1α signaling is vital in ATP-driven chemoresistance and may serve as a potential target for breast cancer therapies.
    DOI:  https://doi.org/10.1038/s41419-022-04647-6
  27. Front Cell Dev Biol. 2022 ;10 791986
      Objectives: Endoplasmic reticulum (ER) stress plays pivotal roles in the regulation of skeletal muscle damage and dysfunction in multiple disease conditions. We postulate the activation of ER stress in idiopathic inflammatory myopathies (IIM). Methods: Thirty-seven patients with immune-mediated necrotizing myopathy (IMNM), 21 patients with dermatomyositis (DM), 6 patients with anti-synthetase syndrome (ASS), and 10 controls were enrolled. The expression of ER stress-induced autophagy pathway was detected using histological sections, Western blot, and real-time quantitative Polymerase Chain Reaction. Results: ER stress-induced autophagy pathway was activated in biopsied muscle of patients with IMNM, DM, and ASS. The ER chaperone protein, glucose-regulated protein 78 (GRP78)/BiP expression in skeletal muscle correlated with autophagy, myofiber atrophy, myonecrosis, myoregeneration, and disease activity in IMNM. Conclusion: ER stress was involved in patients with IIM and correlates with disease activity in IMNM. ER stress response may be responsible for skeletal muscle damage and repair in IIM.
    Keywords:  endoplasmic reticulum stress; glucose-regulated protein 78 (GRP78)/BiP; idiopathic inflammatory myopathies; immune-mediated necrotizing myopathy; skeletal muscle dysfunction
    DOI:  https://doi.org/10.3389/fcell.2022.791986
  28. Sci Adv. 2022 Mar 04. 8(9): eabn2070
      Mammalian photoreceptors aggregate numerous mitochondria, organelles chiefly for energy production, in the ellipsoid region immediately adjacent to the light-sensitive outer segment to support the high metabolic demands of phototransduction. However, these complex, lipid-rich organelles are also poised to affect light passage into the outer segment. Here, we show, via live imaging and simulations, that despite this risk of light scattering or absorption, these tightly packed mitochondria "focus" light for entry into the outer segment and that mitochondrial remodeling affects such light concentration. This "microlens"-like feature of cone mitochondria delivers light with an angular dependence akin to the Stiles-Crawford effect (SCE), providing a simple explanation for this essential visual phenomenon that improves resolution. This new insight into the optical role of mitochondria is relevant for the interpretation of clinical ophthalmological imaging, lending support for the use of SCE as an early diagnostic tool in retinal disease.
    DOI:  https://doi.org/10.1126/sciadv.abn2070
  29. Toxicol Res (Camb). 2022 Feb;11(1): 195-205
       Background: Fine particulate matter (PM2.5) is a ubiquitous air pollutant, and it has been reported to be closely associated with lung inflammatory injury. In this study, the potential molecular mechanisms underlying PM2.5-induced cellular inflammation in human bronchial epithelial (BEAS-2B) cells were investigated.
    Materials and methods: Ambient PM2.5 particulates from Suzhou, China, were collected and re-suspended in ultrapure water. Cellular damages, characterized by oxidative stress, mitochondrial injury, and inflammatory cytokine production, were determined in 24 h PM2.5-treated BEAS-2B cells with or without 3-methyladenine (3-MA; autophagy inhibitor) pretreatment. Biomarkers related to oxidative damage, inflammatory injury and autophagy signaling pathways were also measured.
    Results: Uptake of PM2.5 in BEAS-2B cells induced cellular oxidative damage, mitochondrial injury, and inflammatory responses as indicated by a significant decrease in GSH/GSSG ratio, increased MDA content, dilated mitochondria with loss and rupture of crista, and production of inflammatory cytokines. Activation of Nrf-2/TXNIP-mediated NF-κB and Bnip3L/NIX-dependent mitophagy signaling pathways, as well as accumulation of autophagosomes and autolysosomes, were also observed. A 6 h pretreatment of 3-MA increased PM2.5-induced oxidative damage and cellular inflammation as indicated by increasing protein levels of HO-1, TXNIP, Bnip3L/NIX and IL-8 gene expression.
    Conclusions: PM2.5 induced cellular inflammatory injury by oxidative stress, mitochondrial dysfunction, and mitophagy initiation. Although induction of Bnip3L/NIX-mediated mitophagy in BEAS-2B cells appeared to confer protection in response to PM2.5, dysfunction of autophagic flux may be a critical contributor to defective mitophagy and cellular inflammatory response.
    Keywords:  PM2.5; autophagic flux; inflammation; mitochondrial dysfunction; mitophagy; oxidative stress
    DOI:  https://doi.org/10.1093/toxres/tfac001