bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2022–02–20
eightteen papers selected by
Marco Tigano, Thomas Jefferson University



  1. Curr Protoc. 2022 Feb;2(2): e372
      Mitochondria have emerged as key drivers of mammalian innate immune responses, functioning as signaling hubs to trigger inflammation and orchestrating metabolic switches required for phagocyte activation. Mitochondria also contain damage-associated molecular patterns (DAMPs), molecules that share similarity with pathogen-associated molecular patterns (PAMPs) and can engage innate immune sensors to drive inflammation. The aberrant release of mitochondrial DAMPs during cellular stress and injury is an increasingly recognized trigger of inflammatory responses in human diseases. Mitochondrial DNA (mtDNA) is a particularly potent DAMP that engages multiple innate immune sensors, although mounting evidence suggests that cytosolic mtDNA is primarily detected via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. cGAS and STING are widely expressed in mammalian cells and serve as key regulators of type I interferon and cytokine expression in both infectious and inflammatory diseases. Despite growing roles for the mtDNA-cGAS-STING axis in human disease, assays to quantify mtDNA release into the cytosol and approaches to link mtDNA to cGAS-STING signaling are not standardized, which increases the possibility for experimental artifacts and misinterpretation of data. Here, we present a series of protocols for assaying the release of mtDNA into the cytosol and subsequent activation of innate immune signaling in mammalian cells. We highlight genetic and pharmacological approaches to induce and inhibit mtDNA release from mitochondria. We also describe immunofluorescence microscopy and cellular fractionation assays to visualize morphological changes in mtDNA and quantify mtDNA accumulation in the cytosol. Finally, we include protocols to examine mtDNA-dependent cGAS-STING activation by RT-qPCR and western blotting. These methods can be performed with standard laboratory equipment and are highly adaptable to a wide range of mammalian cell types. They will permit researchers working across the spectrum of biological and biomedical sciences to accurately and reproducibly measure cytosolic mtDNA release and resulting innate immune responses. © 2022 Wiley Periodicals LLC. Basic Protocol 1: siRNA-mediated knockdown of TFAM to induce mtDNA instability, cytosolic release, and activation of the cGAS-STING pathway Alternate Protocol: Pharmacological induction of mtDNA release and cGAS-STING activation using ABT-737 and Q-VD-OPH Basic Protocol 2: Isolation and quantitation of DNA from cytosolic, mitochondrial, and nuclear fractions Basic Protocol 3: Pharmacological inhibition of mtDNA replication and release.
    Keywords:  STING; cGAS; innate immunity; mitochondria; mitochondrial DNA
    DOI:  https://doi.org/10.1002/cpz1.372
  2. Nat Cell Biol. 2022 Feb;24(2): 181-193
      The accumulation of deleterious mitochondrial DNA (∆mtDNA) causes inherited mitochondrial diseases and ageing-associated decline in mitochondrial functions such as oxidative phosphorylation. Following mitochondrial perturbations, the bZIP protein ATFS-1 induces a transcriptional programme to restore mitochondrial function. Paradoxically, ATFS-1 is also required to maintain ∆mtDNAs in heteroplasmic worms. The mechanism by which ATFS-1 promotes ∆mtDNA accumulation relative to wild-type mtDNAs is unclear. Here we show that ATFS-1 accumulates in dysfunctional mitochondria. ATFS-1 is absent in healthy mitochondria owing to degradation by the mtDNA-bound protease LONP-1, which results in the nearly exclusive association between ATFS-1 and ∆mtDNAs in heteroplasmic worms. Moreover, we demonstrate that mitochondrial ATFS-1 promotes the binding of the mtDNA replicative polymerase (POLG) to ∆mtDNAs. Interestingly, inhibition of the mtDNA-bound protease LONP-1 increased ATFS-1 and POLG binding to wild-type mtDNAs. LONP-1 inhibition in Caenorhabditis elegans and human cybrid cells improved the heteroplasmy ratio and restored oxidative phosphorylation. Our findings suggest that ATFS-1 promotes mtDNA replication in dysfunctional mitochondria by promoting POLG-mtDNA binding, which is antagonized by LONP-1.
    DOI:  https://doi.org/10.1038/s41556-021-00840-5
  3. Cell Death Dis. 2022 02 16. 13(2): 156
      Mitochondrial dysfunction is becoming one of the main pathology factors involved in the etiology of neurological disorders. Recently, mutations of the coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) which encode two homologous proteins that belong to the mitochondrial CHCH domain protein family, are linked to Parkinson's disease and amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), respectively. However, the physiological and pathological roles of these twin proteins have not been well elaborated. Here, we show that, in physiological conditions, CHCHD2 and CHCHD10 interact with OMA1 and suppress its enzyme activity, which not only restrains the initiation of the mitochondrial integrated response stress (mtISR), but also suppresses the processing of OPA1 for mitochondrial fusion. Further, during mitochondria stress-induced by carbonyl cyanide m-chlorophenylhydrazone (CCCP) treatment, CHCHD2 and CHCHD10 translocate to the cytosol and interacte with eIF2a, which attenuates mtISR overactivation by suppressing eIF2a phosphorylation and its downstream response. As such, knockdown of CHCHD2 and CHCHD10 triggers mitochondrial ISR, and such cellular response is enhanced by CCCP treatment. Therefore, our findings demonstrate the first "mtISR suppressor" localized in mitochondria for regulating stress responses in mammalian cells, which has a profound pathological impact on the CHCH2/CHCH10-linked neurodegenerative disorder.
    DOI:  https://doi.org/10.1038/s41419-022-04602-5
  4. Int J Mol Sci. 2022 Jan 25. pii: 1320. [Epub ahead of print]23(3):
      Interactions between the mitochondrial inner and outer membranes and between mitochondria and other organelles closely correlates with the sensitivity of ovarian cancer to cisplatin and other chemotherapeutic drugs. However, the underlying mechanism remains unclear. Recently, the mitochondrial protease OMA1, which regulates internal and external signals in mitochondria by cleaving mitochondrial proteins, was shown to be related to tumor progression. Therefore, we evaluated the effect of OMA1 on the response to chemotherapeutics in ovarian cancer cells and the mouse subcutaneous tumor model. We found that OMA1 activation increased ovarian cancer sensitivity to cisplatin in vivo and in vitro. Mechanistically, in ovarian cancer, OMA1 cleaved optic atrophy 1 (OPA1), leading to mitochondrial inner membrane cristae remodeling. Simultaneously, OMA1 induced DELE1 cleavage and its cytoplasmic interaction with EIF2AK1. We also demonstrated that EIF2AK1 cooperated with the ER stress sensor EIF2AK3 to amplify the EIF2S1/ATF4 signal, resulting in the rupture of the mitochondrial outer membrane. Knockdown of OMA1 attenuated these activities and reversed apoptosis. Additionally, we found that OMA1 protease activity was regulated by the prohibitin 2 (PHB2)/stomatin-like protein 2 (STOML2) complex. Collectively, OMA1 coordinates the mitochondrial inner and outer membranes to induce ovarian cancer cell death. Thus, activating OMA1 may be a novel treatment strategy for ovarian cancer.
    Keywords:  DELE1; OMA1; endoplasmic reticulum stress; mitochondrial membranes; ovarian cancer
    DOI:  https://doi.org/10.3390/ijms23031320
  5. Nat Commun. 2022 Feb 18. 13(1): 967
      Inhibition of the master growth regulator mTORC1 (mechanistic target of rapamycin complex 1) slows ageing across phyla, in part by reducing protein synthesis. Various stresses globally suppress protein synthesis through the integrated stress response (ISR), resulting in preferential translation of the transcription factor ATF-4. Here we show in C. elegans that inhibition of translation or mTORC1 increases ATF-4 expression, and that ATF-4 mediates longevity under these conditions independently of ISR signalling. ATF-4 promotes longevity by activating canonical anti-ageing mechanisms, but also by elevating expression of the transsulfuration enzyme CTH-2 to increase hydrogen sulfide (H2S) production. This H2S boost increases protein persulfidation, a protective modification of redox-reactive cysteines. The ATF-4/CTH-2/H2S pathway also mediates longevity and increased stress resistance from mTORC1 suppression. Increasing H2S levels, or enhancing mechanisms that H2S influences through persulfidation, may represent promising strategies for mobilising therapeutic benefits of the ISR, translation suppression, or mTORC1 inhibition.
    DOI:  https://doi.org/10.1038/s41467-022-28599-9
  6. Methods Mol Biol. 2022 ;2428 63-73
      The attenuation of global translation is a critical outcome of the integrated stress response (ISR). Consequently, it is important to effectively detect and measure protein synthesis in studies seeking to evaluate the ISR. This chapter details two methods, surface sensing of translation (SUnSET) and fluorescent noncanonical amino acid tagging (FUNCAT), to measure global translation activity in individual cells using fluorescence microscopy as a read-out. Detecting bulk translation activity in single cells is advantageous for the concurrent observation of newly synthesized proteins and other cellular structures and to identify differences in translation activity among individuals within a population of cells.
    Keywords:  Click chemistry; FUNCAT; Fluorescent noncanonical amino acid tagging; Immunofluorescence; Integrated stress response; Puromycin; Puromycylation; SUnSET; Surface sensing of translation; Translation
    DOI:  https://doi.org/10.1007/978-1-0716-1975-9_4
  7. Int J Mol Sci. 2022 Jan 31. pii: 1659. [Epub ahead of print]23(3):
      Mitochondrial DNA (mtDNA) has been identified as a significant genetic biomarker in disease, cancer and evolution. Mitochondria function as modulators for regulating cellular metabolism. In the clinic, mtDNA variations (mutations/single nucleotide polymorphisms) and dysregulation of mitochondria-encoded genes are associated with survival outcomes among cancer patients. On the other hand, nuclear-encoded genes have been found to regulate mitochondria-encoded gene expression, in turn regulating mitochondrial homeostasis. These observations suggest that the crosstalk between the nuclear genome and mitochondrial genome is important for cellular function. Therefore, this review summarizes the significant mechanisms and functional roles of mtDNA variations (DNA level) and mtDNA-encoded genes (RNA and protein levels) in cancers and discusses new mechanisms of crosstalk between mtDNA and the nuclear genome.
    Keywords:  SNP; cancer; mitochondria; mutation; ncRNA; prognostic marker
    DOI:  https://doi.org/10.3390/ijms23031659
  8. Methods Mol Biol. 2022 ;2428 3-18
      Phosphorylation of the translation initiation factor eIF2α is an adaptive signaling event that is essential for cell and organismal survival from yeast to humans. It is central to the integrated stress response (ISR) that maintains cellular homeostasis in the face of threats ranging from viral infection, amino acid, oxygen, and heme deprivation to the accumulation of misfolded proteins in the endoplasmic reticulum. Phosphorylation of eIF2α has broad physiological, pathological, and therapeutic relevance. However, despite more than two decades of research and growing pharmacological interest, phosphorylation of eIF2α remains difficult to detect and quantify, because of its transient nature and because substoichiometric amounts of this modification are sufficient to profoundly reshape cellular physiology. This review aims to provide a roadmap for facilitating a robust evaluation of eIF2α phosphorylation and its downstream consequences in cells and organisms.
    Keywords:  ATF4; CHOP; Integrated stress response; PPP1R15A/GADD34; PPP1R15B/CReP; Signaling; Stress signaling; Translation; Unfolded protein response; eIF2α dephosphorylation; eIF2α phosphorylation
    DOI:  https://doi.org/10.1007/978-1-0716-1975-9_1
  9. Methods Mol Biol. 2022 ;2428 157-171
      Translational control provides a strategy for rapid optimization of gene expression and restoration of protein homeostasis in response to cellular stresses. An important mechanism for translational control involves phosphorylation of eIF2, which invokes the integrated stress response (ISR). In the ISR, initiation of bulk protein synthesis is lowered coincident with enhanced translation efficiency of select gene transcripts that serve critical functions in stress adaptation. In this chapter, we focus on polysome profiling as a tool for establishing and characterizing translation control induced by eIF2 phosphorylation during environmental stresses. We describe in detail the experimental strategies of polysome profiling for detecting bulk repression of the translational machinery and quantifying translational control of key stress-induced gene transcripts. These experimental strategies can be adjusted to measure individual gene transcripts or genome-wide analyses and can be adapted to measure changes in the levels of ribosome subunits and associated factors invoked by various cellular cues in the ISR.
    Keywords:  ATF4; Integrated stress response; Polysome profiling; Translational control; mRNA translation
    DOI:  https://doi.org/10.1007/978-1-0716-1975-9_10
  10. Cell Rep. 2022 02 15. pii: S2211-1247(22)00091-2. [Epub ahead of print]38(7): 110370
      The transition between quiescence and activation in neural stem and progenitor cells (NSPCs) is coupled with reversible changes in energy metabolism with key implications for lifelong NSPC self-renewal and neurogenesis. How this metabolic plasticity is ensured between NSPC activity states is unclear. We find that a state-specific rewiring of the mitochondrial proteome by the i-AAA peptidase YME1L is required to preserve NSPC self-renewal. YME1L controls the abundance of numerous mitochondrial substrates in quiescent NSPCs, and its deletion activates a differentiation program characterized by broad metabolic changes causing the irreversible shift away from a fatty-acid-oxidation-dependent state. Conditional Yme1l deletion in adult NSPCs in vivo results in defective self-renewal and premature differentiation, ultimately leading to NSPC pool depletion. Our results disclose an important role for YME1L in coordinating the switch between metabolic states of NSPCs and suggest that NSPC fate is regulated by compartmentalized changes in protein network dynamics.
    Keywords:  OMA1; YME1L; adult neurogenesis; metabolic rewiring; mitochondria; mitochondrial dynamics; mitochondrial proteome; neural stem cells; proliferation; self-renewal
    DOI:  https://doi.org/10.1016/j.celrep.2022.110370
  11. J Cell Biol. 2022 03 07. pii: e202101021. [Epub ahead of print]221(3):
      ADP-ribosylation is a reversible post-translational modification where an ADP-ribose moiety is covalently attached to target proteins by ADP-ribosyltransferases (ARTs). Although best known for its nuclear roles, ADP-ribosylation is increasingly recognized as a key regulatory strategy across cellular compartments. ADP-ribosylation of mitochondrial proteins has been widely reported, but the exact nature of mitochondrial ART enzymes is debated. We have identified neuralized-like protein 4 (NEURL4) as a mitochondrial ART enzyme and show that most ART activity associated with mitochondria is lost in the absence of NEURL4. The NEURL4-dependent ADP-ribosylome in mitochondrial extracts from HeLa cells includes numerous mitochondrial proteins previously shown to be ADP-ribosylated. In particular, we show that NEURL4 is required for the regulation of mtDNA integrity via poly-ADP-ribosylation of mtLIG3, the rate-limiting enzyme for base excision repair (BER). Collectively, our studies reveal that NEURL4 acts as the main mitochondrial ART enzyme under physiological conditions and provide novel insights in the regulation of mitochondria homeostasis through ADP-ribosylation.
    DOI:  https://doi.org/10.1083/jcb.202101021
  12. Nat Commun. 2022 Feb 16. 13(1): 894
      Mitochondrial proteolysis is an evolutionarily conserved quality-control mechanism to maintain proper mitochondrial integrity and function. However, the physiological relevance of stress-induced impaired mitochondrial protein quality remains unclear. Here, we demonstrate that LONP1, a major mitochondrial protease resides in the matrix, plays a role in controlling mitochondrial function as well as skeletal muscle mass and strength in response to muscle disuse. In humans and mice, disuse-related muscle loss is associated with decreased mitochondrial LONP1 protein. Skeletal muscle-specific ablation of LONP1 in mice resulted in impaired mitochondrial protein turnover, leading to mitochondrial dysfunction. This caused reduced muscle fiber size and strength. Mechanistically, aberrant accumulation of mitochondrial-retained protein in muscle upon loss of LONP1 induces the activation of autophagy-lysosome degradation program of muscle loss. Overexpressing a mitochondrial-retained mutant ornithine transcarbamylase (ΔOTC), a known protein degraded by LONP1, in skeletal muscle induces mitochondrial dysfunction, autophagy activation, and cause muscle loss and weakness. Thus, these findings reveal a role of LONP1-dependent mitochondrial protein quality-control in safeguarding mitochondrial function and preserving skeletal muscle mass and strength, and unravel a link between mitochondrial protein quality and muscle mass maintenance during muscle disuse.
    DOI:  https://doi.org/10.1038/s41467-022-28557-5
  13. Methods Mol Biol. 2022 ;2428 19-40
      In the presence of different physiological and environmental stresses, cells rapidly initiate stress responses to re-establish cellular homeostasis. Stress responses usually orchestrate both transcriptional and translational programs via distinct mechanisms. With the advance of transcriptomics and proteomics technologies, transcriptional and translational outputs to a particular stress condition have become easier to measure; however, these technologies lack the ability to reveal the upstream regulatory pathways. Unbiased genetic screens based on a transcriptional or translational reporter are powerful approaches to identify regulatory factors of a specific stress response. CRISPR/Cas-based technologies, together with next-generation sequencing, enable genome-scale pooled screens to systematically elucidate gene function in mammalian cells, with a significant reduction in the rate of off-target effects compared to the previously used RNAi technology. Here, we describe our fluorescence-activated cell sorting (FACS)-based CRISPR interference (CRISPRi) screening platform using a translational reporter to identify novel genetic factors of the mitochondrial stress response in mammalian cells. This protocol provides a general framework for scientists who wish to establish a reporter-based CRISPRi screening platform to address questions in their area of research.
    Keywords:  CRISPRi; FACS; Genetic screens; Mammalian cells; Mitochondrial stress response; Transcriptional reporter; Translational reporter
    DOI:  https://doi.org/10.1007/978-1-0716-1975-9_2
  14. Proc Natl Acad Sci U S A. 2022 Feb 22. pii: e2115624119. [Epub ahead of print]119(8):
      Cancer metabolism, including in mitochondria, is a disease hallmark and therapeutic target, but its regulation is poorly understood. Here, we show that many human tumors have heterogeneous and often reduced levels of Mic60, or Mitofilin, an essential scaffold of mitochondrial structure. Despite a catastrophic collapse of mitochondrial integrity, loss of bioenergetics, and oxidative damage, tumors with Mic60 depletion slow down cell proliferation, evade cell death, and activate a nuclear gene expression program of innate immunity and cytokine/chemokine signaling. In turn, this induces epithelial-mesenchymal transition (EMT), activates tumor cell movements through exaggerated mitochondrial dynamics, and promotes metastatic dissemination in vivo. In a small-molecule drug screen, compensatory activation of stress response (GCN2) and survival (Akt) signaling maintains the viability of Mic60-low tumors and provides a selective therapeutic vulnerability. These data demonstrate that acutely damaged, "ghost" mitochondria drive tumor progression and expose an actionable therapeutic target in metastasis-prone cancers.
    Keywords:  cell motility; metastasis; mitochondria
    DOI:  https://doi.org/10.1073/pnas.2115624119
  15. Nat Cell Biol. 2022 Feb;24(2): 148-154
      Metabolic characteristics of adult stem cells are distinct from their differentiated progeny, and cellular metabolism is emerging as a potential driver of cell fate conversions1-4. How these metabolic features are established remains unclear. Here we identified inherited metabolism imposed by functionally distinct mitochondrial age-classes as a fate determinant in asymmetric division of epithelial stem-like cells. While chronologically old mitochondria support oxidative respiration, the electron transport chain of new organelles is proteomically immature and they respire less. After cell division, selectively segregated mitochondrial age-classes elicit a metabolic bias in progeny cells, with oxidative energy metabolism promoting differentiation in cells that inherit old mitochondria. Cells that inherit newly synthesized mitochondria with low levels of Rieske iron-sulfur polypeptide 1 have a higher pentose phosphate pathway activity, which promotes de novo purine biosynthesis and redox balance, and is required to maintain stemness during early fate determination after division. Our results demonstrate that fate decisions are susceptible to intrinsic metabolic bias imposed by selectively inherited mitochondria.
    DOI:  https://doi.org/10.1038/s41556-021-00837-0
  16. Nat Commun. 2022 Feb 16. 13(1): 889
      The existence of non-canonical nicotinamide adenine diphosphate (NAD) 5'-end capped RNAs is now well established. Nevertheless, the biological function of this nucleotide metabolite cap remains elusive. Here, we show that the yeast Saccharomyces cerevisiae cytoplasmic 5'-end exoribonuclease Xrn1 is also a NAD cap decapping (deNADding) enzyme that releases intact NAD and subsequently degrades the RNA. The significance of Xrn1 deNADding is evident in a deNADding deficient Xrn1 mutant that predominantly still retains its 5'-monophosphate exonuclease activity. This mutant reveals Xrn1 deNADding is necessary for normal growth on non-fermenting sugar and is involved in modulating mitochondrial NAD-capped RNA levels and may influence intramitochondrial NAD levels. Our findings uncover a contribution of mitochondrial NAD-capped RNAs in overall NAD regulation with the deNADding activity of Xrn1 fulfilling a central role.
    DOI:  https://doi.org/10.1038/s41467-022-28555-7
  17. Methods Mol Biol. 2022 ;2428 41-62
      Protein synthesis is a highly regulated essential process. As such, it is subjected to substantial regulation in response to stress. One hallmark of the Integrated Stress Response (ISR) is the immediate shutdown of most translation through phosphorylation of the alpha subunit of translation initiation factor eIF2 and activation of eIF4E binding proteins. While these posttranslational modifications largely inhibit cap-dependent translation, many mRNA resist this inhibition by alternative translation mechanisms involving cis-regulatory sequences and structures in 5' transcript leaders, including upstream Open Reading Frames (uORFs), Internal Ribosome Entry Sites (IRESes), and Cap-Independent Translation Elements (CITEs). Studies of uORF and IRES activity are often performed on a gene-by-gene basis; however, high-throughput methods have recently emerged. Here, we describe a protocol for Polysome Library Sequencing (PoLib-Seq; Fig. 1), a multiplexed assay of reporter gene translation that can be used during the ISR. A designer library of reporter RNAs are transfected into tissue-culture cells, and their translation is assayed via sucrose gradient fractionation followed by high-throughput sequencing. As an example, we include PoLib-seq results simultaneously assaying translation of wildtype and uORF mutant human ATF4 reporter RNAs, recapitulating the known function of uORF1 in resisting translational inhibition during the ISR.
    Keywords:  Massively parallel reporter assay; Polysome gradient fractionation; mRNA translation; uORFs
    DOI:  https://doi.org/10.1007/978-1-0716-1975-9_3
  18. Nat Cell Biol. 2022 Feb;24(2): 168-180
      Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.
    DOI:  https://doi.org/10.1038/s41556-022-00843-w