bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2021–11–28
fourteen papers selected by
Marco Tigano, Thomas Jefferson University



  1. Trends Cell Biol. 2021 Nov 23. pii: S0962-8924(21)00207-5. [Epub ahead of print]
      Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
    Keywords:  cell signalling; heteroplasmy; metabolic remodelling; mitochondrial disease; mtDNA
    DOI:  https://doi.org/10.1016/j.tcb.2021.10.005
  2. mBio. 2021 Nov 23. e0255721
      Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the UL12.5 gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the UL12.5 gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. IMPORTANCE Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in UL12, we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.
    Keywords:  APOBEC3A; HSV-1; cytidine deaminase; herpes simplex virus; innate immunity; mitochondria
    DOI:  https://doi.org/10.1128/mBio.02557-21
  3. Int J Mol Sci. 2021 Nov 12. pii: 12223. [Epub ahead of print]22(22):
      Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.
    Keywords:  MIP1; MPV17; POLG; RNR2; RRM2B; SYM1; drug repurposing; mitochondrial DNA depletion syndromes (MDS); mitochondrial dNTP pool; yeast
    DOI:  https://doi.org/10.3390/ijms222212223
  4. Sci Rep. 2021 Nov 23. 11(1): 22755
      Mitochondrial DNA (mtDNA) maintenance is essential to sustain a functionally healthy population of mitochondria within cells. Proper mtDNA replication and distribution within mitochondrial networks are essential to maintain mitochondrial homeostasis. However, the fundamental basis of mtDNA segregation and distribution within mitochondrial networks is still unclear. To address these questions, we developed an algorithm, Mitomate tracker to unravel the global distribution of nucleoids within mitochondria. Using this tool, we decipher the semi-regular spacing of nucleoids across mitochondrial networks. Furthermore, we show that mitochondrial fission actively regulates mtDNA distribution by controlling the distribution of nucleoids within mitochondrial networks. Specifically, we found that primary cells bearing disease-associated mutations in the fission proteins DRP1 and MYH14 show altered nucleoid distribution, and acute enrichment of enlarged nucleoids near the nucleus. Further analysis suggests that the altered nucleoid distribution observed in the fission mutants is the result of both changes in network structure and nucleoid density. Thus, our study provides novel insights into the role of mitochondria fission in nucleoid distribution and the understanding of diseases caused by fission defects.
    DOI:  https://doi.org/10.1038/s41598-021-01987-9
  5. Cell Rep. 2021 Nov 23. pii: S2211-1247(21)01479-0. [Epub ahead of print]37(8): 110000
      In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load.
    Keywords:  DNA packaging; STED nanoscopy; mitochondrial gene expression; mtDNA mutations; mtDNA replication
    DOI:  https://doi.org/10.1016/j.celrep.2021.110000
  6. J Vis Exp. 2021 Nov 08.
      Mitochondria are important in the pathophysiology of many neurodegenerative diseases. Changes in mitochondrial volume, mitochondrial membrane potential (MMP), mitochondrial production of reactive oxygen species (ROS), and mitochondrial DNA (mtDNA) copy number are often features of these processes. This report details a novel flow cytometry-based approach to measure multiple mitochondrial parameters in different cell types, including human induced pluripotent stem cells (iPSCs) and iPSC-derived neural and glial cells. This flow-based strategy uses live cells to measure mitochondrial volume, MMP, and ROS levels, as well as fixed cells to estimate components of the mitochondrial respiratory chain (MRC) and mtDNA-associated proteins such as mitochondrial transcription factor A (TFAM). By co-staining with fluorescent reporters, including MitoTracker Green (MTG), tetramethylrhodamine ethyl ester (TMRE), and MitoSox Red, changes in mitochondrial volume, MMP, and mitochondrial ROS can be quantified and related to mitochondrial content. Double staining with antibodies against MRC complex subunits and translocase of outer mitochondrial membrane 20 (TOMM20) permits the assessment of MRC subunit expression. As the amount of TFAM is proportional to mtDNA copy number, the measurement of TFAM per TOMM20 gives an indirect measurement of mtDNA per mitochondrial volume. The entire protocol can be carried out within 2-3 h. Importantly, these protocols allow the measurement of mitochondrial parameters, both at the total level and the specific level per mitochondrial volume, using flow cytometry.
    DOI:  https://doi.org/10.3791/63116
  7. Cell Commun Signal. 2021 Nov 20. 19(1): 116
       BACKGROUND: Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitochondrial dynamics. The aim of this study was to evaluate protein levels and changes in gene transcription on human WFS cell model under experimental ER stress.
    METHODS: We performed transcriptomic and proteomic analysis on WFS human cell model-skin fibroblasts reprogrammed into induced pluripotent stem (iPS) cells and then into neural stem cells (NSC) with subsequent ER stress induction using tunicamycin (TM). Results were cross-referenced with publicly available RNA sequencing data in hippocampi and hypothalami of mice with WFS1 deficiency.
    RESULTS: Proteomic analysis identified specific signal pathways that differ in NSC WFS cells from healthy ones. Next, detailed analysis of the proteins involved in the mitochondrial function showed the down-regulation of subunits of the respiratory chain complexes in NSC WFS cells, as well as the up-regulation of proteins involved in Krebs cycle and glycolysis when compared to the control cells. Based on pathway enrichment analysis we concluded that in samples from mice hippocampi the mitochondrial protein import machinery and OXPHOS were significantly down-regulated.
    CONCLUSIONS: Our results show the functional and morphological secondary mitochondrial damage in patients with WFS. Video Abstract.
    Keywords:  ER stress; Mitochondria; Proteomics; Transcriptomics; Wolfram syndrome
    DOI:  https://doi.org/10.1186/s12964-021-00791-2
  8. BMC Genom Data. 2021 Nov 26. 22(1): 52
       BACKGROUND: Mitochondrial DNA (mtDNA) codes for products necessary for electron transport and mitochondrial gene translation. mtDNA mutations can lead to human disease and influence organismal fitness. The PolG mutator mouse lacks mtDNA proofreading function and rapidly accumulates mtDNA mutations, making it a model for examining the causes and consequences of mitochondrial mutations. Premature aging in PolG mice and their physiology have been examined in depth, but the location, frequency, and diversity of their mtDNA mutations remain understudied. Identifying the locations and spectra of mtDNA mutations in PolG mice can shed light on how selection shapes mtDNA, both within and across organisms.
    RESULTS: Here, we characterized somatic and germline mtDNA mutations in brain and liver tissue of PolG mice to quantify mutation count (number of unique mutations) and frequency (mutation prevalence). Overall, mtDNA mutation count and frequency were the lowest in the D-loop, where an mtDNA origin of replication is located, but otherwise uniform across the mitochondrial genome. Somatic mtDNA mutations have a higher mutation count than germline mutations. However, germline mutations maintain a higher frequency and were also more likely to be silent. Cytosine to thymine mutations characteristic of replication errors were the plurality of basepair changes, and missense C to T mutations primarily resulted in increased protein hydrophobicity. Unlike wild type mice, PolG mice do not appear to show strand asymmetry in mtDNA mutations. Indel mutations had a lower count and frequency than point mutations and tended to be short, frameshift deletions.
    CONCLUSIONS: Our results provide strong evidence that purifying selection plays a major role in the mtDNA of PolG mice. Missense mutations were less likely to be passed down in the germline, and they were less likely to spread to high frequencies. The D-loop appears to have resistance to mutations, either through selection or as a by-product of replication processes. Missense mutations that decrease hydrophobicity also tend to be selected against, reflecting the membrane-bound nature of mtDNA-encoded proteins. The abundance of mutations from polymerase errors compared with reactive oxygen species (ROS) damage supports previous studies suggesting ROS plays a minimal role in exacerbating the PolG phenotype, but our findings on strand asymmetry provide discussion for the role of polymerase errors in wild type organisms. Our results provide further insight on how selection shapes mtDNA mutations and on the aging mechanisms in PolG mice.
    Keywords:  Germline mutations; Mutation spectrum; PolG; Protein hydrophobicity; ROS; mitochondrial theory of aging; mtDNA; mtDNA mutations; mtDNA selection
    DOI:  https://doi.org/10.1186/s12863-021-01005-x
  9. Cells. 2021 Oct 23. pii: 2856. [Epub ahead of print]10(11):
      Translational errors frequently arise during protein synthesis, producing misfolded and dysfunctional proteins. Chronic stress resulting from translation errors may be particularly relevant in tissues that must synthesize and secrete large amounts of secretory proteins. Here, we studied the proteostasis networks in the liver of mice that express the Rps2-A226Y ribosomal ambiguity (ram) mutation to increase the translation error rate across all proteins. We found that Rps2-A226Y mice lack activation of the eIF2 kinase/ATF4 pathway, the main component of the integrated stress response (ISR), as well as the IRE1 and ATF6 pathways of the ER unfolded protein response (ER-UPR). Instead, we found downregulation of chronic ER stress responses, as indicated by reduced gene expression for lipogenic pathways and acute phase proteins, possibly via upregulation of Sirtuin-1. In parallel, we observed activation of alternative proteostasis responses, including the proteasome and the formation of stress granules. Together, our results point to a concerted response to error-prone translation to alleviate ER stress in favor of activating alternative proteostasis mechanisms, most likely to avoid cell damage and apoptotic pathways, which would result from persistent activation of the ER and integrated stress responses.
    Keywords:  ER stress; ER-UPR; RNA-Seq; Sirtuin-1; error-prone translation; liver; mistranslation; proteostasis; ribosomal misreading
    DOI:  https://doi.org/10.3390/cells10112856
  10. Exp Cell Res. 2021 Nov 18. pii: S0014-4827(21)00490-0. [Epub ahead of print]409(2): 112934
      Hematopoietic stem cells (HSCs) are sensitive to ionizing radiation (IR) damage, and its injury is the primary cause of bone marrow (BM) hematopoietic failure and even death after exposure to a certain dose of IR. However, the underlying mechanisms remain incompletely understood. Here we show that mitochondrial oxidative damage, which is characterized by mitochondrial reactive oxygen species overproduction, mitochondrial membrane potential reduction and mitochondrial permeability transition pore opening, is rapidly induced in both human and mouse HSCs and directly accelerates HSC apoptosis after IR exposure. Mechanistically, 5-lipoxygenase (5-LOX) is induced by IR exposure and contributes to IR-induced mitochondrial oxidative damage through inducing lipid peroxidation. Intriguingly, a natural antioxidant, caffeic acid (CA), can attenuate IR-induced HSC apoptosis through suppressing 5-LOX-mediated mitochondrial oxidative damage, thus protecting against BM hematopoietic failure after IR exposure. These findings uncover a critical role for mitochondria in IR-induced HSC injury and highlight the therapeutic potential of CA in BM hematopoietic failure induced by IR.
    Keywords:  Caffeic acid; Hematopoietic stem cell; Irradiation; Mitochondrial damage; ROS
    DOI:  https://doi.org/10.1016/j.yexcr.2021.112934
  11. Cells. 2021 Nov 04. pii: 3019. [Epub ahead of print]10(11):
      The liver is targeted by several human pathogenic RNA viruses for viral replication and dissemination; despite this, the extent of innate immune sensing of RNA viruses by human hepatocytes is insufficiently understood to date. In particular, for highly human tropic viruses such as hepatitis C virus, cell culture models are needed to study immune sensing. However, several human hepatoma cell lines have impaired RNA sensing pathways and fail to mimic innate immune responses in the human liver. Here we compare the RNA sensing properties of six human hepatoma cell lines, namely Huh-6, Huh-7, HepG2, HepG2-HFL, Hep3B, and HepaRG, with primary human hepatocytes. We show that primary liver cells sense RNA through retinoic acid-inducible gene I (RIG-I) like receptor (RLR) and Toll-like receptor 3 (TLR3) pathways. Of the tested cell lines, Hep3B cells most closely mimicked the RLR and TLR3 mediated sensing in primary hepatocytes. This was shown by the expression of RLRs and TLR3 as well as the expression and release of bioactive interferon in primary hepatocytes and Hep3B cells. Our work shows that Hep3B cells partially mimic RNA sensing in primary hepatocytes and thus can serve as in vitro model to study innate immunity to RNA viruses in hepatocytes.
    Keywords:  RIG-I; RNA virus; TLR3; arenavirus; coronavirus; hepatoma cells; innate immunity; interferon; liver; primary hepatocytes
    DOI:  https://doi.org/10.3390/cells10113019
  12. Cell Metab. 2021 Nov 12. pii: S1550-4131(21)00529-5. [Epub ahead of print]
      Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.
    Keywords:  Mitochondria; complexome; copy numbers; disease; half-lives; high-confidence proteome; human cells; protein translocation; respiratory chain; smORFs
    DOI:  https://doi.org/10.1016/j.cmet.2021.11.001
  13. Heliyon. 2021 Nov;7(11): e08371
      Glioblastoma (GBM) is the most lethal primary brain tumour with a median survival of only 15 months. We have previously demonstrated the generation of an in vitro therapy resistance model that captures the residual resistant (RR) disease cells of GBM post-radiation. We also reported the proteomic landscape of parent, residual, and relapse cells using iTRAQ based quantitative proteomics of glioma cells. The proteomics data revealed significant up-regulation (fold change >1.5) of 14-3-3ζ, specifically in GBM RR cells. This was further confirmed by western blots in residual cells generated from GBM cell lines and patient sample-derived short-term primary culture. ShRNA-mediated knockdown of 14-3-3ζ radio-sensitized GBM cells and further stimulated therapy-induced senescence (TIS) and multinucleated giant cells (MNGCs) phenotype in RR cells. Intriguingly, 14-3-3ζ knockdown residual cells also showed a significantly higher number of mitochondria and increased mtDNA content. Indeed, in vitro GST pull-down mass spectrometry analysis of GST tagged 14-3-3ζ from RR cells identified novel interacting partners of 14-3-3ζ involved in cellular metabolism. Taken together, here we identified novel interacting partners of 14-3-3ζ and proposed an unconventional function of 14-3-3ζ as a negative regulator of TIS and mitochondrial biogenesis in residual resistant cells and loss of which also radio-sensitize GBM cells.
    Keywords:  14-3-3ζ; Glioblastoma; MNGCs; Mitochondrial biogenesis; Therapy induced senescence
    DOI:  https://doi.org/10.1016/j.heliyon.2021.e08371
  14. Pharmaceuticals (Basel). 2021 Nov 17. pii: 1178. [Epub ahead of print]14(11):
      Inflammation and immunity are linked to the onset and development of obesity and metabolic disorders. Pattern recognition receptors (PRRs) are key regulators of inflammation and immunity in response to infection and stress, and they have critical roles in metainflammation. In this study, we investigated whether RIG-I (retinoic acid-inducible gene I)-like receptors were involved in the regulation of obesity-induced metabolic stress in RIG-I knockout (KO) mice fed a high-fat diet (HFD). RIG-I KO mice fed an HFD for 12 weeks showed greater body weight gain, higher fat composition, lower lean body mass, and higher epididymal white adipose tissue (eWAT) weight than WT mice fed HFD. In contrast, body weight gain, fat, and lean mass compositions, and eWAT weight of MDA5 (melanoma differentiation-associated protein 5) KO mice fed HFD were similar to those of WT mice fed a normal diet. RIG-I KO mice fed HFD exhibited more severely impaired glucose tolerance and higher HOMA-IR values than WT mice fed HFD. IFN-β expression induced by ER stress inducers, tunicamycin and thapsigargin, was abolished in RIG-I-deficient hepatocytes and macrophages, showing that RIG-I is required for ER stress-induced IFN-β expression. Our results show that RIG-I deficiency promotes obesity and insulin resistance induced by a high-fat diet, presenting a novel role of RIG-I in the development of obesity and metabolic disorders.
    Keywords:  ER stress; metabolic syndrome; metainflammation; obesity; pattern-recognition receptors
    DOI:  https://doi.org/10.3390/ph14111178