bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2021‒11‒21
seventeen papers selected by
Marco Tigano
Thomas Jefferson University


  1. Autophagy. 2021 Nov 15. 1-3
      Mitochondria are critical organelles that maintain cellular metabolism and overall function. The catabolic pathway of autophagy plays a central role in recycling damaged mitochondria. Although the autophagy pathway is indispensable for some cancer cell survival, our latest study shows that rare autophagy-dependent cancer cells can adapt to loss of this core pathway. In the process, the autophagy-deficient cells acquire unique dependencies on alternate forms of mitochondrial homeostasis. These rare autophagy-deficient clones circumvent the lack of canonical autophagy by increasing mitochondrial dynamics and by recycling damaged mitochondria via mitochondrial-derived vesicles (MDVs). These studies are the first to implicate MDVs in cancer cell metabolism although many unanswered questions remain about this non-canonical pathway.
    Keywords:  Cancer; mitochondrial fusion; mitochondrial-derived vesicles; mitophagy; non-canonical autophagy
    DOI:  https://doi.org/10.1080/15548627.2021.1999562
  2. J Pathol Clin Res. 2021 Nov 17.
      Papillary thyroid carcinoma tall cell variant (PTC-TCV), a form of PTC regarded as an aggressive subtype, shares several morphologic features with oncocytic tumors. Pathogenic homoplasmic/highly heteroplasmic somatic mitochondrial DNA (mtDNA) mutations, usually affecting oxidative phosphorylation (OXPHOS) complex I subunits, are hallmarks of oncocytic cells. To clarify the relationship between PTC-TCV and oncocytic thyroid tumors, 17 PTC-TCV and 16 PTC non-TCV controls (cPTC) were subjected to: (1) transmission electron microscopy (TEM) to assess mitochondria accumulation, (2) next-generation sequencing to analyze mtDNA and nuclear genes frequently mutated in thyroid carcinoma, and (3) immunohistochemistry (IHC) for prohibitin and complex I subunit NDUFS4 to evaluate OXPHOS integrity. TEM showed replacement of cytoplasm by mitochondria in PTC-TCV but not in cPTC cells. All 17 PTC-TCV had at least one mtDNA mutation, totaling 21 mutations; 3/16 cPTC (19%) had mtDNA mutations (p < 0.001). PTC-TCV mtDNA mutations were homoplasmic/highly heteroplasmic, 16/21 (76%) mapping within mtDNA-encoded complex I subunits. MtDNA mutations in cPTC were homoplasmic in 2 cases and at low heteroplasmy in the third case, 2/3 mapping to mtDNA-encoded complex I subunits; 2/3 cPTC with mtDNA mutations had small tall cell subpopulations. PTC-TCV showed strong prohibitin expression and cPTC low-level expression, consistent with massive and limited mitochondrial content, respectively. All 17 PTC-TCV showed NDUFS4 loss (partial or complete) and 3 of 16 cPTC (19%) had (partial) NDUFS4 loss, consistent with lack of complex I integrity in PTC-TCV (p < 0.001). IHC loss of NDUFS4 was associated with mtDNA mutations (p < 0.001). Four BRAF V600E mutated PTCs had loss of NDUSF4 expression limited to neoplastic cell subpopulations with tall cell features, indicating that PTCs first acquire BRAF V600E and then mtDNA mutations. Similar to oncocytic thyroid tumors, PTC-TCV is characterized by mtDNA mutations, massive accumulation of mitochondria, and loss of OXPHOS integrity. IHC loss of NDUFS-4 can be used as a surrogate marker for OXPHOS disruption and to reliably diagnose PTC-TCV.
    Keywords:  BRAF V600E; mitochondria; mitochondrial DNA mutations; oncocytic tumors; papillary thyroid carcinoma; tall cell variant papillary carcinoma; thyroid tumor diagnosis
    DOI:  https://doi.org/10.1002/cjp2.247
  3. J Biol Chem. 2021 Nov 13. pii: S0021-9258(21)01217-5. [Epub ahead of print] 101410
      Pluripotent stem cells are known to shift their mitochondrial metabolism upon differentiation, but the mechanisms underlying such metabolic rewiring are not fully understood. We hypothesized that during differentiation of human induced pluripotent stem cells (hiPSCs), mitochondria undergo mitophagy and are then replenished by the biogenesis of new mitochondria adapted to the metabolic needs of the differentiated cell. To evaluate mitophagy during iPSC differentiation, we performed live cell imaging of mitochondria and lysosomes in hiPSCs differentiating into vascular endothelial cells using confocal microscopy. We observed a burst of mitophagy during the initial phases of hiPSC differentiation into the endothelial lineage, followed by subsequent mitochondrial biogenesis as assessed by the mitochondrial biogenesis biosensor MitoTimer. Furthermore, hiPSCs undergoing differentiation showed greater mitochondrial oxidation of fatty acids and an increase in ATP levels as assessed by an ATP biosensor. We also found that during mitophagy, the mitochondrial phosphatase PGAM5 is cleaved in hiPSC-derived endothelial progenitor cells and in turn activates β-catenin-mediated transcription of the transcriptional co-activator PGC-1α, which upregulates mitochondrial biogenesis. These data suggest that mitophagy itself initiates the increase in mitochondrial biogenesis and oxidative metabolism through transcriptional changes during endothelial cell differentiation. In summary, these findings reveal a mitophagy-mediated mechanism for metabolic rewiring and maturation of differentiating cells via the β-catenin signaling pathway. We propose that such mitochondrial-nuclear crosstalk during hiPSC differentiation could be leveraged to enhance the metabolic maturation of differentiated cells.
    Keywords:  cell differentiation; induced pluripotent stem cells; mitochondrial metabolism; mitophagy; β-catenin
    DOI:  https://doi.org/10.1016/j.jbc.2021.101410
  4. Mol Cell. 2021 Nov 08. pii: S1097-2765(21)00910-2. [Epub ahead of print]
      Mitochondria contain a specific translation machinery for the synthesis of mitochondria-encoded respiratory chain components. Mitochondrial tRNAs (mt-tRNAs) are also generated from the mitochondrial DNA and, similar to their cytoplasmic counterparts, are post-transcriptionally modified. Here, we find that the RNA methyltransferase METTL8 is a mitochondrial protein that facilitates 3-methyl-cytidine (m3C) methylation at position C32 of the mt-tRNASer(UCN) and mt-tRNAThr. METTL8 knockout cells show a reduction in respiratory chain activity, whereas overexpression increases activity. In pancreatic cancer, METTL8 levels are high, which correlates with lower patient survival and an enhanced respiratory chain activity. Mitochondrial ribosome profiling uncovered mitoribosome stalling on mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons. Further analysis of the respiratory chain complexes using mass spectrometry revealed reduced incorporation of the mitochondrially encoded proteins ND6 and ND1 into complex I. The well-balanced translation of mt-tRNASer(UCN)- and mt-tRNAThr-dependent codons through METTL8-mediated m3C32 methylation might, therefore, facilitate the optimal composition and function of the mitochondrial respiratory chain.
    Keywords:  METTL8; RNA modification; m(3)C; mt-tRNA; translation
    DOI:  https://doi.org/10.1016/j.molcel.2021.10.018
  5. Autophagy. 2021 Nov 19. 1-11
      PINK1 accumulation at the outer mitochondrial membrane (OMM) is a key event required to signal depolarized mitochondria to the autophagy machinery. How this early step is, in turn, modulated by autophagy proteins remains less characterized. Here, we show that, upon mitochondrial depolarization, the proautophagic protein AMBRA1 is recruited to the OMM and interacts with PINK1 and ATAD3A, a transmembrane protein that mediates mitochondrial import and degradation of PINK1. Downregulation of AMBRA1 expression results in reduced levels of PINK1 due to its enhanced degradation by the mitochondrial protease LONP1, which leads to a decrease in PINK1-mediated ubiquitin phosphorylation and mitochondrial PRKN/PARKIN recruitment. Notably, ATAD3A silencing rescues defective PINK1 accumulation in AMBRA1-deficient cells upon mitochondrial damage. Overall, our findings underline an upstream contribution of AMBRA1 in the control of PINK1-PRKN mitophagy by interacting with ATAD3A and promoting PINK1 stability. This novel regulatory element may account for changes of PINK1 levels in neuropathological conditions.
    Keywords:  Autophagy; LONP1; PRKN/PARKIN; TOMM complex; ubiquitin phosphorylation
    DOI:  https://doi.org/10.1080/15548627.2021.1997052
  6. EMBO Rep. 2021 Nov 15. e53054
      Cancer cells depend on mitochondria to sustain their increased metabolic need and mitochondria therefore constitute possible targets for cancer treatment. We recently developed small-molecule inhibitors of mitochondrial transcription (IMTs) that selectively impair mitochondrial gene expression. IMTs have potent antitumor properties in vitro and in vivo, without affecting normal tissues. Because therapy-induced resistance is a major constraint to successful cancer therapy, we investigated mechanisms conferring resistance to IMTs. We employed a CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats)-(CRISP-associated protein 9) whole-genome screen to determine pathways conferring resistance to acute IMT1 treatment. Loss of genes belonging to von Hippel-Lindau (VHL) and mammalian target of rapamycin complex 1 (mTORC1) pathways caused resistance to acute IMT1 treatment and the relevance of these pathways was confirmed by chemical modulation. We also generated cells resistant to chronic IMT treatment to understand responses to persistent mitochondrial gene expression impairment. We report that IMT1-acquired resistance occurs through a compensatory increase of mitochondrial DNA (mtDNA) expression and cellular metabolites. We found that mitochondrial transcription factor A (TFAM) downregulation and inhibition of mitochondrial translation impaired survival of resistant cells. The identified susceptibility and resistance mechanisms to IMTs may be relevant for different types of mitochondria-targeted therapies.
    Keywords:  CRISPR-Cas9 screen; cancer; chemoresistance; inhibitor of mitochondrial transcription; mtDNA
    DOI:  https://doi.org/10.15252/embr.202153054
  7. Heart Fail Clin. 2022 Jan;pii: S1551-7136(21)00072-6. [Epub ahead of print]18(1): 51-60
      Mitochondrial diseases (MD) include an heterogenous group of systemic disorders caused by sporadic or inherited mutations in nuclear or mitochondrial DNA (mtDNA), causing impairment of oxidative phosphorylation system. Hypertrophic cardiomyopathy is the dominant pattern of cardiomyopathy in all forms of mtDNA disease, being observed in almost 40% of the patients. Dilated cardiomyopathy, left ventricular noncompaction, and conduction system disturbances have been also reported. In this article, the authors discuss the current clinical knowledge on MD, focusing on diagnosis and management of mitochondrial diseases caused by mtDNA mutations.
    Keywords:  Hypertrophic cardiomyopathy; MELAS syndrome; Mitochondrial diseases; mtDNA
    DOI:  https://doi.org/10.1016/j.hfc.2021.07.003
  8. J Biosci. 2021 ;pii: 99. [Epub ahead of print]46
      Mitochondria-nucleus communications and DNA damage response (DDR) play roles in cellular stress and closely associate with a range of diseases. Mitochondrial uncoupling proteins (UCPs) are capable of uncoupling mitochondrial oxidative phosphorylation and protecting against oxidative stress. However, the potential role of UCPs in DDR and DDR-related mitochondria-nucleus communications remains unknown. The review deduces UCPs functions in mitochondria-nucleus communications implicated in metabolite regulation (e.g., reactive oxygen species) and Ca2+ signaling, and in DDR (e.g., base excision repair, double-strand DNA break repair, mitophagy and nuclear DNA degradation). Represented are shared microRNAs that regulate UCPs and DDR. It would provide novel insight into UCPs-mediated mitochondria-nucleus communications and DDR, and potentially promote drug target identification, drug discovery and clinical therapy of DDR-related diseases.
  9. Oxid Med Cell Longev. 2021 ;2021 1341604
      Mitochondria are the main powerhouse of the cell, generating ATP through the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS), which drives myriad cellular processes. In addition to their role in maintaining bioenergetic homeostasis, changes in mitochondrial metabolism, permeability, and morphology are critical in cell fate decisions and determination. Notably, mitochondrial respiration coupled with the passage of electrons through the electron transport chain (ETC) set up a potential source of reactive oxygen species (ROS). While low to moderate increase in intracellular ROS serves as secondary messenger, an overwhelming increase as a result of either increased production and/or deficient antioxidant defenses is detrimental to biomolecules, cells, and tissues. Since ROS and mitochondria both regulate cell fate, attention has been drawn to their involvement in the various processes of carcinogenesis. To that end, the link between a prooxidant milieu and cell survival and proliferation as well as a switch to mitochondrial OXPHOS associated with recalcitrant cancers provide testimony for the remarkable metabolic plasticity as an important hallmark of cancers. In this review, the regulation of cell redox status by mitochondrial metabolism and its implications for cancer cell fate will be discussed followed by the significance of mitochondria-targeted therapies for cancer.
    DOI:  https://doi.org/10.1155/2021/1341604
  10. Nat Metab. 2021 Nov;3(11): 1521-1535
      Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.
    DOI:  https://doi.org/10.1038/s42255-021-00477-6
  11. Protein Cell. 2021 Nov 20.
      In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson's disease (PD). However, difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1. Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains. CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology. Importantly, PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival. Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.
    Keywords:  Parkinson’s disease; mitochondria; neurodegeneration; neurogenesis; non-human primates
    DOI:  https://doi.org/10.1007/s13238-021-00888-x
  12. Nat Nanotechnol. 2021 Nov 18.
      Cancer progresses by evading the immune system. Elucidating diverse immune evasion strategies is a critical step in the search for next-generation immunotherapies for cancer. Here we report that cancer cells can hijack the mitochondria from immune cells via physical nanotubes. Mitochondria are essential for metabolism and activation of immune cells. By using field-emission scanning electron microscopy, fluorophore-tagged mitochondrial transfer tracing and metabolic quantification, we demonstrate that the nanotube-mediated transfer of mitochondria from immune cells to cancer cells metabolically empowers the cancer cells and depletes the immune cells. Inhibiting the nanotube assembly machinery significantly reduced mitochondrial transfer and prevented the depletion of immune cells. Combining a farnesyltransferase and geranylgeranyltransferase 1 inhibitor, namely, L-778123, which partially inhibited nanotube formation and mitochondrial transfer, with a programmed cell death protein 1 immune checkpoint inhibitor improved the antitumour outcomes in an aggressive immunocompetent breast cancer model. Nanotube-mediated mitochondrial hijacking can emerge as a novel target for developing next-generation immunotherapy agents for cancer.
    DOI:  https://doi.org/10.1038/s41565-021-01000-4
  13. Brain. 2021 Nov 11. pii: awab407. [Epub ahead of print]
      With more than forty causative genes identified so far, autosomal dominant cerebellar ataxias exhibit a remarkable genetic heterogeneity. Yet, half the patients are lacking a molecular diagnosis. In a large family with nine sampled affected members, we performed exome sequencing combined with whole-genome linkage analysis. We identified a missense variant in NPTX1, NM_002522.3: c.1165G>A: p.G389R, segregating with the phenotype. Further investigations with whole exome sequencing and an amplicon-based panel identified four additional unrelated families segregating the same variant, for whom a common founder effect could be excluded. A second missense variant, NM_002522.3: c.980A>G: p.E327G, was identified in a fifth familial case. The NPTX1-associated phenotype consists of a late-onset, slowly progressive, cerebellar ataxia, with downbeat nystagmus, cognitive impairment reminiscent of cerebellar cognitive affective syndrome, myoclonic tremor and mild cerebellar vermian atrophy on brain imaging. NPTX1 encodes the neuronal pentraxin 1, a secreted protein with various cellular and synaptic functions. Both variants affect conserved amino-acid residues and are extremely rare or absent from public databases. In COS7 cells, overexpression of both neuronal pentraxin 1 variants altered endoplasmic reticulum morphology and induced ATF6-mediated endoplasmic reticulum stress, associated with cytotoxicity. In addition, the p. E327G variant abolished neuronal pentraxin 1 secretion, as well as its capacity to form a high molecular weight complex with the wild-type protein. Co-immunoprecipitation experiments coupled with mass spectrometry analysis demonstrated abnormal interactions of this variant with the cytoskeleton. In agreement with these observations, in silico modelling of the neuronal pentraxin 1 complex evidenced a destabilizing effect for the p. E327G substitution, located at the interface between monomers. On the contrary, the p. G389 residue, located at the protein surface, had no predictable effect on the complex stability. Our results establish NPTX1 as a new causative gene in autosomal dominant cerebellar ataxias. We suggest that variants in NPTX1 can lead to cerebellar ataxia due to endoplasmic reticulum stress, mediated by ATF6, and associated to a destabilization of NP1 polymers in a dominant-negative manner for one of the variants.
    Keywords:  autosomal dominant cerebellar ataxias; endoplasmic reticulum stress; neuronal pentraxin 1
    DOI:  https://doi.org/10.1093/brain/awab407
  14. Am J Med Genet A. 2021 Nov 19.
      NDUFAF5 encodes a Complex I assembly factor which is critical to the modification of a core subunit, NDUFS7, in early Complex I factor assembly. Mutations in NDUFAF5 have been previously shown to cause Complex I deficiency leading to mitochondrial respiratory chain impairment. More than 15 individuals affected by variants in NDUFAF5 have been described; however, there is phenotypic heterogeneity within this cohort. Some individuals display features of classical Leigh syndrome with early onset neurodegeneration whereas others live into early adulthood with progressive neurological deficits. Here, we present a clinical report of a 17-year-old African American individual with compound heterozygous mutations in NDUFAF5. The individual presented with childhood onset bilateral optic atrophy and developed progressive neuromuscular decline with relatively preserved cognition over time.
    Keywords:  Complex I; Leigh syndrome; NDUFAF5; mitochondrial disease
    DOI:  https://doi.org/10.1002/ajmg.a.62568
  15. Oxid Med Cell Longev. 2021 ;2021 9265016
      Background: The mitochondrial dynamics and mitochondrial biogenesis are essential for maintaining the bioenergy function of mitochondria in diabetic cardiomyopathy (DCM). Previous studies have revealed that secreted frizzled-related protein 2 (SFRP2) is beneficial against apoptosis and oxidative stress. However, no research has confirmed whether SFRP2 regulates oxidative stress and apoptosis through mitochondrial function in DCM.Methods: Exposure of H9C2 cardiomyocytes in high glucose (HG) 25 mM and palmitic acid (PAL) 0.2 mM was used to simulate DCM in vitro. H9C2 cells with SFRP2 overexpression or SFRP2 knockdown were constructed and cultured under glucolipotoxicity or normal glucose conditions. An SD rat model of type 2 diabetes mellitus (T2DM) was generated using a high-fat diet combined with a low-dose STZ injection. Overexpression of SFRP2 in the rat model was generated by using an adeno-associated virus approach. CCK-8, TUNEL assay, and DHE staining were used to detect cell viability, and MitoTracker Red CMXRos was used to detect changes in mitochondrial membrane potential. We used qRT-PCR and western blot to further explore the mechanisms of SFRP2 regulating mitochondrial dynamics through the AMPK/PGC1-α pathway to improve diabetic cardiomyocyte injury.
    Results: Our results indicated that SFRP2 was significantly downregulated in H9C2 cells and cardiac tissues in T2DM conditions, accompanied by decreased expression of mitochondrial dysfunction. The mitochondrial membrane potential was reduced, and the cells were led to oxidative stress injury and apoptosis. Furthermore, the overexpression of SFRP2 could reverse apoptosis and promote mitochondrial function in T2DM conditions in vitro and in vivo. We also found that silencing endogenous SFRP2 could further promote glucolipotoxicity-induced mitochondrial dysfunction and apoptosis in cardiomyocytes, accompanied by downregulation of p-AMPK.
    Conclusion: SFRP2 exerted cardioprotective effects by salvaging mitochondrial function in an AMPK-PGC1-α-dependent manner, which modulates mitochondrial dynamics and mitochondrial biogenesis, reducing oxidative stress and apoptosis. SFRP2 may be a promising therapeutic biomarker in DCM.
    DOI:  https://doi.org/10.1155/2021/9265016
  16. Hum Mol Genet. 2021 Nov 15. pii: ddab329. [Epub ahead of print]
      Mutations in the mitochondrial protein CHCHD2 cause autosomal-dominant PD characterized by the preferential loss of substantia nigra dopamine (DA) neurons. Therefore, understanding the function of CHCHD2 in neurons may provide vital insights into how mitochondrial dysfunction contributes to neurodegeneration in PD. To investigate the normal requirement and function of CHCHD2 in neurons, we first examined CHCHD2 levels, and showed that DA neurons have higher CHCHD2 levels than other neuron types, both in vivo and in co-culture. We then generated mice with either a targeted deletion of CHCHD2 in DA neurons, or a deletion in the brain or total body. All three models were viable, and loss of CHCHD2 in the brain did not cause degeneration of DA neurons. Mice lacking CHCHD2 in DA neurons did display sex-specific changes to locomotor activity, but we did not observe differences in assays of muscle strength, exercise endurance, or motor coordination. Furthermore, mitochondria derived from mice lacking CHCHD2 did not display abnormalities in OXPHOS function. Lastly, resilience to CHCHD2 deletion could not be explained by functional complementation by its paralog CHCHD10, as deletion of both CHCHD10 and CHCHD2 did not cause degeneration of DA neurons in the midbrain. These findings support the hypothesis that pathogenic CHCHD2 mutations cause PD through a toxic gain-of-function, rather than loss-of-function mechanism.
    DOI:  https://doi.org/10.1093/hmg/ddab329