bims-nenemi Biomed News
on Neuroinflammation, neurodegeneration and mitochondria
Issue of 2021‒10‒31
sixteen papers selected by
Marco Tigano
Thomas Jefferson University


  1. Sheng Li Xue Bao. 2021 Oct 25. 73(5): 835-844
      The mitochondrial unfolded protein response is an important component of the mitochondrial protein quality control program. It can effectively remove unfolded or misfolded proteins under stress, and maintain a stable and healthy mitochondrial pool. The mitochondrial unfolded protein response is coordinated by multiple signaling pathways. The classical ATF4/ATF5-CHOP pathway is induced by accumulation of unfolded or misfolded proteins in the mitochondrial matrix, which reduces stress toxicity by regulating molecular chaperones and proteases. Sirt3-FOXO3a-SOD2 pathway, located in the mitochondrial matrix, plays an important role in anti-oxidative damage. The ERα-NRF1-HTRA2 pathway mainly removes unfolded proteins in the mitochondrial membrane space and improves the quality control of mitochondrial proteins. These three signaling pathways work both independently and cooperatively to enhance mitochondrial capacity and maintain health under stress.
  2. Front Cell Dev Biol. 2021 ;9 710247
      Recessive mutations in DNAJC3, an endoplasmic reticulum (ER)-resident BiP co-chaperone, have been identified in patients with multisystemic neurodegeneration and diabetes mellitus. To further unravel these pathomechanisms, we employed a non-biased proteomic approach and identified dysregulation of several key cellular pathways, suggesting a pathophysiological interplay of perturbed lipid metabolism, mitochondrial bioenergetics, ER-Golgi function, and amyloid-beta processing. Further functional investigations in fibroblasts of patients with DNAJC3 mutations detected cellular accumulation of lipids and an increased sensitivity to cholesterol stress, which led to activation of the unfolded protein response (UPR), alterations of the ER-Golgi machinery, and a defect of amyloid precursor protein. In line with the results of previous studies, we describe here alterations in mitochondrial morphology and function, as a major contributor to the DNAJC3 pathophysiology. Hence, we propose that the loss of DNAJC3 affects lipid/cholesterol homeostasis, leading to UPR activation, β-amyloid accumulation, and impairment of mitochondrial oxidative phosphorylation.
    Keywords:  DNAJC3; cholesterol-stress; mitochondria; proteomics; unfolded protein response (UPR)
    DOI:  https://doi.org/10.3389/fcell.2021.710247
  3. FEBS J. 2021 Oct 24.
      Proteolytic activity declines with age, resulting in the accumulation of aggregated proteins in aged organisms. To investigate how disturbance in proteostasis causes cellular senescence, we developed a stress-induced premature senescence (SIPS) model, in which normal human fibroblast MRC-5 cells were treated with the proteasome inhibitor MG132 or the V-ATPase inhibitor bafilomycin A1 (BAFA1) for 5 days. Time-course studies revealed a significant increase in intracellular reactive oxygen species (ROS) and mitochondrial superoxide during and after drug treatment. Mitochondrial membrane potential initially decreased, suggesting temporal mitochondrial dysfunction during drug treatment, but was restored along with mitochondrial accumulation after drug treatment. AMP-activated protein kinase alpha (AMPKα) was notably activated during treatment; thereafter, intracellular ATP levels significantly increased. SIPS induction by MG132 or BAFA1 was partially attenuated by co-treatment with vitamin E or rapamycin, in which the levels of ROS, mitochondrial accumulation, and protein aggregates were suppressed, implying the critical involvement of oxidative stress and mitochondrial function in SIPS progression. Rapamycin co-treatment also augmented the expression of HSP70 and activation of AKT, which could recover proteostasis and promote cell survival, respectively. Our study proposes a possible pathway from the disturbed proteostasis to cellular senescence via excess ROS production as well as functional and quantitative changes in mitochondria.
    Keywords:  DNA damage response; aggregate; lysosome; oxidative stress; proteasome
    DOI:  https://doi.org/10.1111/febs.16249
  4. J Biol Chem. 2021 Oct 21. pii: S0021-9258(21)01145-5. [Epub ahead of print] 101339
      Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and post-translational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g. oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1 that upon activation recruits the ubiquitin ligase parkin. Here we review mechanisms of mitophagy with an emphasis on post-translational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on post-translational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and anti-apoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
    Keywords:  autophagy; mitochondria; phosphorylation; protein kinase PINK1; ubiquitin ligase parkin; ubiquitylation
    DOI:  https://doi.org/10.1016/j.jbc.2021.101339
  5. Int J Radiat Oncol Biol Phys. 2021 Nov 01. pii: S0360-3016(21)01711-9. [Epub ahead of print]111(3S): e253
      PURPOSE/OBJECTIVE(S): Onc201 is a novel therapeutic in clinical trials that displays widespread anti-cancer activity and also has been shown to act as a radiosensitizer. Previously, we showed that Onc201 and its derivatives activate a mitochondrial protease, ClpP, resulting in mitochondrial protein degradation, induction of ATF4/CHOP and cytostatic activity in a breast cancer cell line. However, how activation of ClpP, a mitochondrial protease, signals to the nucleus has not been established. We show here that Onc201 induces GDF15, a mitochondrial stress cytokine, and further delineate the upstream signaling pathways. The aim of these studies is to better understand mechanisms of mitochondrial to nuclear signaling to allow for more effective anti-cancer strategies to be developed.MATERIALS/METHODS: To monitor mitochondrial to nuclear signaling, Sum159, a breast cancer cell line, was treated with Onc201 or its derivatives, and monitored for ATF4 or GDF15 protein expression by Western blotting. Delineation of the signaling pathways involved was achieved using siRNA directed against various targets or by use of specific kinase inhibitors.
    RESULTS: Treatment of Sum159 cells with Onc201 resulted in the induction of GDF15 and ATF4 protein as early as ∼17 hours after treatment. Using siRNA knockdowns, we found that GDF15 induction is dependent upon ClpP, ATF4, and CHOP. However, knockdown of GCN2 or HRI, which are eiF2a kinases known to regulate ATF4, had no effect on GDF15, nor did siRNA against IRE1a. Because we found that Onc201 induced Erk, Akt and AMPK activity, we targeted these pathways with specific kinase inhibitors; however, none of these pathways were required for GDF15 induction. These results suggest that other pathways may be involved in the induction of ATF4 and GDF15 and these are currently under investigation.
    CONCLUSION: We and others have shown that Onc201 and related molecules, activate ClpP, a mitochondrial protease resulting in rapid mitochondrial protein degradation, loss of mitochondrial function, and cytostasis or apoptosis in a variety of cancer cell lines. Importantly, Onc201 shows very low toxicity to normal cell lines and is well tolerated in patients. However, additional stratagems need to be explored to improve the efficacy of Onc201. To this end, we sought to understand how mitochondrial to nuclear signaling occurs as a way to target this pathway. These results establish that ATF4/CHOP signaling is induced and this subsequently signals to induce GDF15. However, it still remains unclear how ATF4/CHOP expression is induced and this area is currently being investigated.
    DOI:  https://doi.org/10.1016/j.ijrobp.2021.07.841
  6. Front Microbiol. 2021 ;12 757690
      Porcine reproductive and respiratory syndrome virus (PRRSV) was previously shown to induce a certain level of cellular stress during viral replication. Unfolded protein response (UPR) is a cellular stress response responsible for coping with stress and cellular survival. However, the pathway leading to the induction of UPR that may influence PRRSV replication is still unknown. Here, we found that PRRSV infection induced UPR prior to interferon response. Induction of UPR significantly enhanced the expression of interferon and interferon-related genes, thus leading to the suppression of PRRSV infection. Next, we explored the underlying mechanisms of UPR-induced antiviral response. We found that induction of UPR promoted the expression of protein kinase R (PKR), and PKR was highly correlated with the reduction of PRRSV replication. Furthermore, tunicamycin stimulation and PKR overexpression activated NF-κB and interferon response at the early stage of PRRSV infection, thus reinforcing the expression of type I interferons and proinflammatory cytokines and leading to inhibition of PRRSV. In addition, PRRSV nsp4 was shown to reduce the expression of PKR. These findings might have implications for our understandings of the host's immune mechanism against PRRSV and a new strategy of PRRSV to evade the host antiviral immunity.
    Keywords:  Nsp4; PKR; PRRSV; interferon response; unfolded protein response
    DOI:  https://doi.org/10.3389/fmicb.2021.757690
  7. Nature. 2021 Oct 27.
      Glutathione (GSH) is a small-molecule thiol that is abundant in all eukaryotes and has key roles in oxidative metabolism1. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions2. GSH is synthesized exclusively in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remains unknown. Here, using organellar proteomics and metabolomics approaches, we identify SLC25A39, a mitochondrial membrane carrier of unknown function, as a regulator of GSH transport into mitochondria. Loss of SLC25A39 reduces mitochondrial GSH import and abundance without affecting cellular GSH levels. Cells lacking both SLC25A39 and its paralogue SLC25A40 exhibit defects in the activity and stability of proteins containing iron-sulfur clusters. We find that mitochondrial GSH import is necessary for cell proliferation in vitro and red blood cell development in mice. Heterologous expression of an engineered bifunctional bacterial GSH biosynthetic enzyme (GshF) in mitochondria enables mitochondrial GSH production and ameliorates the metabolic and proliferative defects caused by its depletion. Finally, GSH availability negatively regulates SLC25A39 protein abundance, coupling redox homeostasis to mitochondrial GSH import in mammalian cells. Our work identifies SLC25A39 as an essential and regulated component of the mitochondrial GSH-import machinery.
    DOI:  https://doi.org/10.1038/s41586-021-04025-w
  8. Cell Death Discov. 2021 Oct 29. 7(1): 320
      Perturbations to cellular homeostasis, including reduction of the cholesterol level, induce autophagy, a self-digestion process of cellular constituents through an autophagosomal-lysosomal pathway. In accord with its function as a membrane organizer and metabolic sentinel, the cellular response to cholesterol depletion comprises multiple phenomena, including the activation of transcriptional responses, accumulation of reactive oxygen species (ROS), and activation of stress-related signaling pathways. However, the molecular mechanisms by which cholesterol depletion regulates autophagy and the putative involvement of transcriptional responses, ROS and/or stress-related signaling in autophagy regulation in this biological context are not fully understood. Here, we find that cholesterol depletion regulates autophagy at three different levels. First, employing RNA-seq, we show that cholesterol depletion increases the expression of autophagy-related genes independent of ROS or JNK activity. Second, analysis of LC3 lipidation and intracellular localization, and of p62 levels and degradation kinetics, reveals that cholesterol depletion mediates autophagy induction while interfering with autophagic flux. Of note, only the latter depends on ROS accumulation and JNK activity. In view of the common use of cholesterol-reducing drugs as therapeutic agents, our findings have important implications for multiple cellular settings in which autophagy plays a prominent role.
    DOI:  https://doi.org/10.1038/s41420-021-00718-3
  9. Dev Cell. 2021 Oct 22. pii: S1534-5807(21)00809-1. [Epub ahead of print]
      In order to combat molecular damage, most cellular proteins undergo rapid turnover. We have previously identified large nuclear protein assemblies that can persist for years in post-mitotic tissues and are subject to age-related decline. Here, we report that mitochondria can be long lived in the mouse brain and reveal that specific mitochondrial proteins have half-lives longer than the average proteome. These mitochondrial long-lived proteins (mitoLLPs) are core components of the electron transport chain (ETC) and display increased longevity in respiratory supercomplexes. We find that COX7C, a mitoLLP that forms a stable contact site between complexes I and IV, is required for complex IV and supercomplex assembly. Remarkably, even upon depletion of COX7C transcripts, ETC function is maintained for days, effectively uncoupling mitochondrial function from ongoing transcription of its mitoLLPs. Our results suggest that modulating protein longevity within the ETC is critical for mitochondrial proteome maintenance and the robustness of mitochondrial function.
    Keywords:  age mosaicism; aging; electron transport chain; heterogeneity; long-lived proteins; mitochondria; muscle; neurons; protein homeostasis; supercomplexes
    DOI:  https://doi.org/10.1016/j.devcel.2021.10.008
  10. Cell Metab. 2021 Oct 25. pii: S1550-4131(21)00482-4. [Epub ahead of print]
      Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of tgcqmitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.
    Keywords:  metabolism; mitochondria; mitochondrial repurposing; mitohormesis; monocyte/macrophage; tissue repair; type 2 immunity; wound healing
    DOI:  https://doi.org/10.1016/j.cmet.2021.10.004
  11. Cell Death Dis. 2021 Oct 25. 12(11): 997
      The autophagy-lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status. We show that increased autophagic flux and defective apoptosis are associated with radioresistance in HPV(-) HNSCC, whereas HPV(+) HNSCC fail to induce autophagic flux and readily undergo apoptotic cell death upon radiation treatments. The degree of radioresistance and tumor progression of HPV(-) HNSCC respectively correlated with autophagic activity and cytosolic levels of p62. Pharmacological activation of the p62-ZZ domain using small molecule ligands sensitized radioresistant HPV(-) HNSCC cells to ionizing radiation by facilitating p62 self-polymerization and sequestration of cargoes leading to apoptosis. The self-polymerizing activity of p62 was identified as the essential mechanism by which ubiquitinated caspase-8 is sequestered into aggresome-like structures, without which irradiation fails to induce apoptosis in HNSCC. Our results suggest that harnessing p62-dependent sequestration of ubiquitinated caspase-8 provides a novel therapeutic avenue in patients with radioresistant tumors.
    DOI:  https://doi.org/10.1038/s41419-021-04301-7
  12. Nat Struct Mol Biol. 2021 Oct 28.
      Mitochondria, the only semiautonomous organelles in mammalian cells, possess a circular, double-stranded genome termed mitochondrial DNA (mtDNA). While nuclear genomic DNA compaction, chromatin compartmentalization and transcription are known to be regulated by phase separation, how the mitochondrial nucleoid, a highly compacted spherical suborganelle, is assembled and functions is unknown. Here we assembled mitochondrial nucleoids in vitro and show that mitochondrial transcription factor A (TFAM) undergoes phase separation with mtDNA to drive nucleoid self-assembly. Moreover, nucleoid droplet formation promotes recruitment of the transcription machinery via a special, co-phase separation that concentrates transcription initiation, elongation and termination factors, and retains substrates to facilitate mtDNA transcription. We propose a model of mitochondrial nucleoid self-assembly driven by phase separation, and a pattern of co-phase separation involved in mitochondrial transcriptional regulation, which orchestrates the roles of TFAM in both mitochondrial nucleoid organization and transcription.
    DOI:  https://doi.org/10.1038/s41594-021-00671-w
  13. Mol Biol Cell. 2021 Oct 27. mbcE21050229
      Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in ability to replicate after repeated divisions. We found that at least 135 proteins are associated with SFs, and 63 of them are upregulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited upon RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.
    DOI:  https://doi.org/10.1091/mbc.E21-05-0229
  14. Br J Cancer. 2021 Oct 23.
      BACKGROUND: The mechanisms underlying metastasis of colorectal cancer (CRC) remain unclear. C14orf159 is a mitochondrial matrix protein converting D-glutamate to 5-oxo-D-proline. Other metabolic functions of C14orf159, especially on mitochondrial metabolism, and its contribution to CRC metastasis, are not elucidated.METHODS: Metabolome analysis by gas chromatography-mass spectrometry, RNA-sequencing analysis, flow cytometry, migration and invasion assay, sphere-formation assay using C14orf159-knockout and -stable expressing cells, immunohistochemistry of C14orf159 in human CRC specimens, and xenograft experiments using Balb/c nude mice were conducted.
    RESULTS: C14orf159 maintained the mitochondrial membrane potential of human CRC cells, and its involvement in amino acid and glutathione metabolism was demonstrated. In human CRC specimens, a decrease in C14orf159 expression at the invasive front of the tumour and in metastasis was determined. C14orf159 was also shown to attenuate the migration, invasion, and spheroid growth of CRC cells in vitro and colorectal tumour growth and metastasis in vivo. Mechanistically, C14orf159 reduced the expression of genes involved in CRC metastasis, including members of the Wnt and MMP family, by maintaining the mitochondrial membrane potential.
    CONCLUSIONS: Our findings link mitochondrial membrane potential to Wnt/β-catenin signalling and reveal a previously unrecognised function of the mitochondrial matrix protein C14orf159 as a suppressor of CRC metastasis.
    DOI:  https://doi.org/10.1038/s41416-021-01582-9
  15. Exp Eye Res. 2021 Oct 21. pii: S0014-4835(21)00366-3. [Epub ahead of print] 108800
      Aging is a predominant risk factor for various eye diseases. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and its etiology remains unclear. Fragmented and dysfunctional mitochondria are associated with age-related diseases. The retinal pigment epithelium (RPE), a polarized cell layer that functions in visual pigment recycling and degeneration, is suspected as the primary region site of AMD. In the present study, we investigated the relationship between mitochondrial dysfunction and RPE aging. Compared to young mice, aged pigmented mice (C57BL/6J, 12-month-old) exhibit decreased visual function without retinal thinning. Consistently, the rhodopsin expression level decreased in the outer segment of aged mice. Moreover, the cell volume of the RPE increased in aged animals. Interestingly, the expression of mitochondria dynamics-related proteins, including Drp1, was altered in the RPE-choroid complex but not in the neural retina after aging. Electron microscopy revealed that mitochondrial size decreased and cristae width increased in aged RPE. The photoreceptor outer segment (POS) treatment of ARPE-19 cells causes Drp1 activation. Furthermore, pharmacological suppression of mitochondrial fission improved the phagocytosis of the POS. These findings indicate that mitochondrial dysfunction and fission in RPE impede phagocytosis and cause retardation of the visual cycle, which can be one of the age-related defects in the retina that may contribute to the onset of AMD.
    Keywords:  Aging; Dynamin related protein 1; Mitochondria; Phagocytosis; Retinal pigment epithelium
    DOI:  https://doi.org/10.1016/j.exer.2021.108800
  16. Metab Brain Dis. 2021 Oct 28.
      Multiple mitochondrial dysfunction syndrome (MMDS) refers to a class of mitochondrial diseases caused by nuclear gene mutations, which usually begins in early infancy and is classically characterized by markedly impaired neurological development, generalized muscle weakness, lactic acidosis, and hyperglycinemia, cavitating leukoencephalopathy, respiratory failure, as well as early fatality resulted from dysfunction of energy metabolism in multiple systems. So far, six types of MMDS have been identified based on different genotypes, which are caused by mutations in NFU1, BOLA3, IBA57, ISCA2, ISCA1 and PMPCB, respectively. IBA57 encodes a protein involved in the mitochondrial Fe/S cluster assembly process, which plays a vital role in the activity of multiple mitochondrial enzymes. Herein, detailed clinical investigation of 2 Chinese patients from two unrelated families were described, both of them showed mildly delay in developmental milestone before disease onset, the initial symptoms were all presented with acute motor and mental retrogression, and brain MRI showed diffused leukoencephalopathy with cavities, dysplasia of corpus callosum and cerebral atrophy. Exome sequencing revealed three IBA57 variants, one shared variant (c.286T>C) has been previously reported, the remaining two (c.189delC and c.580 A>G) are novel. To enhance the understanding of this rare disease, we further made a literature review about the current progress in clinical, genetic and treatment of the disorder. Due to the rapid progress of MMDS, early awareness is crucial to prompt and proper administration, as well as genetic counseling.
    Keywords:  IBA57; Leukoencephalopathy; MMDS; Mitochondrial disorders; Multiple mitochondrial dysfunction syndrome
    DOI:  https://doi.org/10.1007/s11011-021-00856-8