bims-myxlip Biomed News
on Myxoid liposarcoma
Issue of 2021‒09‒19
two papers selected by
Laura Mannarino
Humanitas Research

  1. Hum Cell. 2021 Sep 17.
      Low-grade fibromyxoid sarcoma (LGFMS) is a rare soft-tissue sarcoma genetically characterized by the presence of the FUS-CREB3L2 gene fusion. While LGFMS exhibits indolent features during its early stages, the rates of recurrence, metastasis, and death from the disease are high. Presently, the role of FUS-CREB3L2 gene fusions in the unique features of LGFMS is not clear, and there is no modality to improve the clinical outcomes of patients with LGFMS; thus, extensive studies on LGFMS are required. Patient-derived cancer cell lines are critical tools for cancer research. However, no cell line has been established for LGFMS. Here, we aimed to develop a novel cell line for LGFMS and successfully established it using surgically resected tumor tissues. The cells, named NCC-LGFMS1-C1, possessed the same fusion genes as their original tumor and visible copy number variations. The cells had a fibroblastic appearance, formed spheroids when they were seeded in a low-attachment dish, and exhibited constant growth and invasion. Additionally, we demonstrated the feasibility of high-throughput drug screening using these cells. In conclusion, the NCC-LGFMS1-C1 cell line is a useful tool for studying LGFMS.
    Keywords:  Fusion gene; Low-grade fibromyxoid sarcoma; Patient-derived cancer model; Patient-derived cell line; Sarcoma
  2. Nat Commun. 2021 Sep 16. 12(1): 5356
      Chromosomal instability (CIN) is a hallmark of cancer1. Yet, many childhood cancers, such as Ewing sarcoma (EwS), feature remarkably 'silent' genomes with minimal CIN2. Here, we show in the EwS model how uncoupling of mitosis and cytokinesis via targeting protein regulator of cytokinesis 1 (PRC1) or its activating polo-like kinase 1 (PLK1) can be employed to induce fatal genomic instability and tumor regression. We find that the EwS-specific oncogenic transcription factor EWSR1-FLI1 hijacks PRC1, which physiologically safeguards controlled cell division, through binding to a proximal enhancer-like GGAA-microsatellite, thereby promoting tumor growth and poor clinical outcome. Via integration of transcriptome-profiling and functional in vitro and in vivo experiments including CRISPR-mediated enhancer editing, we discover that high PRC1 expression creates a therapeutic vulnerability toward PLK1 inhibition that can repress even chemo-resistant EwS cells by triggering mitotic catastrophe.Collectively, our results exemplify how aberrant PRC1 activation by a dominant oncogene can confer malignancy but provide opportunities for targeted therapy, and identify PRC1 expression as an important determinant to predict the efficacy of PLK1 inhibitors being used in clinical trials.