bims-myxlip Biomed News
on Myxoid liposarcoma
Issue of 2021‒06‒06
two papers selected by
Laura Mannarino
Humanitas Research

  1. J Cancer Res Clin Oncol. 2021 Jun 03.
      PURPOSE: Angiosarcoma (AS) is a rare vasoformative sarcoma, with poor overall survival and a high need for novel treatment options. Clinically, AS consists of different subtypes, including AS related to previous UV exposure (UV AS) which could indicate susceptibility to DNA damage repair inhibition. We, therefore, investigated the presence of biomarkers PARP1 (poly(ADP-ribose)polymerase-1) and Schlafen-11 (SLFN11) in UV AS. Based on experiences in other sarcomas, we examined (combination) treatment of PARP inhibitor (PARPi) olaparib and temozolomide (TMZ) in UV AS cell lines.METHODS: Previously collected UV AS (n = 47) and non-UV AS (n = 96) patient samples and two UV AS cell lines (MO-LAS and AS-M) were immunohistochemically assessed for PARP1 and SLFN11 expression. Both cell lines were treated with single agents PARPi olaparib and TMZ, and the combination treatment. Next, cell viability and treatment synergy were analyzed. In addition, effects on apoptosis and DNA damage were examined.
    RESULTS: In 46/47 UV AS samples (98%), PARP1 expression was present. SLFN11 was expressed in 80% (37/46) of cases. Olaparib and TMZ combination treatment was synergistic in both cell lines, with significantly increased apoptosis compared to single agent treatment. Furthermore, a significant increase in DNA damage marker γH2AX was present in both cell lines after combination therapy.
    CONCLUSION: We showed combination treatment of olaparib with TMZ was synergistic in UV AS cell lines. Expression of PARP1 and SLFN11 was present in the majority of UV AS tumor samples. Together, these results suggest combination treatment of olaparib and TMZ is a potential novel AS subtype-specific treatment option for UV AS patients.
    Keywords:  Angiosarcoma; Combination treatment; PARP; SLFN11; Subtype; Temozolomide
  2. Cancers (Basel). 2021 May 19. pii: 2478. [Epub ahead of print]13(10):
      Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas' basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
    Keywords:  IGF signaling; IGF-1R; bone sarcoma; cancer therapy; extracellular matrix; proteoglycans; tumor microenvironment