bims-mricoa Biomed News
on MRI contrast agents
Issue of 2023‒02‒26
two papers selected by
Merve Yavuz
Bilkent University


  1. Genes (Basel). 2023 Jan 19. pii: 259. [Epub ahead of print]14(2):
      The focus of this brief review is to describe the application of nanoparticles, including endogenous nanoparticles (e.g., extracellular vesicles, EVs, and virus capsids) and exogenous nanoparticles (e.g., organic and inorganic materials) in cancer therapy and diagnostics. In this review, we mainly focused on EVs, where a recent study demonstrated that EVs secreted from cancer cells are associated with malignant alterations in cancer. EVs are expected to be used for cancer diagnostics by analyzing their informative cargo. Exogenous nanoparticles are also used in cancer diagnostics as imaging probes because they can be easily functionalized. Nanoparticles are promising targets for drug delivery system (DDS) development and have recently been actively studied. In this review, we introduce nanoparticles as a powerful tool in the field of cancer therapy and diagnostics and discuss issues and future prospects.
    Keywords:  DDS; extracellular vesicle; imaging
    DOI:  https://doi.org/10.3390/genes14020259
  2. Front Cell Infect Microbiol. 2023 ;13 943390
      Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
    Keywords:  iron; manganese; metallostasis; mismetallation; oxidative stress; pathogenesis
    DOI:  https://doi.org/10.3389/fcimb.2023.943390